LMS1585A/LMS1587 5A and 3A Low Dropout Fast Response Regulators

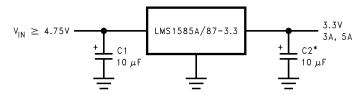
General Description

The LMS1585A and LMS1587 are low dropout positive regulators with output load current of 5A and 3A respectively. Their low dropout voltage (1.2V) and fast transient response make them an excellent solution for low voltage microprocessor applications.

The LMS1585A/87 are available in adjustable versions, which can set the output voltage with only two external resistors. In addition, they are also available in 1.5V and 3.3V fixed voltage version (Note 9).

The LMS1585A/87 circuits include a zener trimmed bandgap reference, current limiting and thermal shutdown.

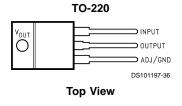
The LMS1585A/87 series are available in TO-220 and TO-263 packages.

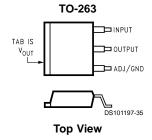

Features

- Fast transient response
- Available in Adjustable, 1.5V, and 3.3V versions
- Current limiting and thermal protection
- Commercial temp. range 0°C to 125°C
- Industrial temp. range
 Line regulation
 -40°C to 125°C
 0.005% (typical)
- Load regulation 0.05% (typical)
- Direct replacement for LT[™]1585A/87

Applications

- Pentium[™] processor supplies
- PowerPC[™] supplies
- Other 2.5V to 3.6V microprocessor supplies
- Low voltage logic supplies

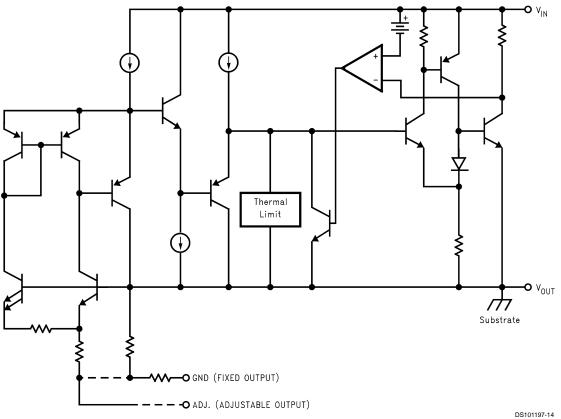

Typical Application



* REQUIRED FOR STABILITY

DS101197-1

Connection Diagrams



LT is a registered trademark of Linear Technology Corporation Pentium is a registered trademark of Intel Corporation PowerPC is a registred trademark of IBM

Ordering Information

Output Current	Package	Temperature Range	Part Number	Transport Media	NSC Drawing	
3A	TO-263	0°C to 125°C	LMS1587CS-ADJ	Rails		
3A			LMS1587CSX-ADJ	Tape and Reel	7	
			LMS1587CS-1.5	Rails		
			LMS1587CSX-1.5	Tape and Reel		
			LMS1587CS-3.3	Rails		
			LMS1587CSX-3.3	Tape and Reel	TOOD	
		-40°C to 125°C	LMS1587IS-ADJ	Rails	TS3B	
			LMS1587ISX-ADJ	Tape and Reel		
			LMS1587IS-1.5	Rails		
			LMS1587ISX-1.5	Tape and Reel		
			LMS1587IS-3.3	Rails	7	
			LMS1587ISX-3.3	Tape and Reel	7	
	TO-220	0°C to 125°C	LMS1587CT-ADJ	Rails		
			LMS1587CT-1.5	Rails	\neg	
			LMS1587CT-3.3	Rails		
		-40°C to 125°C	LMS1587IT-ADJ	Rails	1036	
			LMS1587IT-1.5	Rails		
			LMS1587IT-3.3	Rails	\neg	
5A	TO-263	0°C to 125°C	LMS1585ACS-ADJ	Rails		
			LMS1585ACSX-ADJ	Tape and Reel		
			LMS1585ACS-1.5	Rails		
			LMS1585ACSX-1.5	Tape and Reel		
			LMS1585ACS-3.3	Rails		
			LMS1585ACSX-3.3	Tape and Reel	TS3B	
		-40°C to 125°C	LMS1585AIS-ADJ	Rails	1336	
			LMS1585AISX-ADJ	Tape and Reel		
			LMS1585AIS-1.5	Rails		
			LMS1585AISX-1.5	Tape and Reel		
			LMS1585AIS-3.3	Rails		
			LMS1585AISX-3.3	Tape and Reel		
	TO-220	0°C to 125°C	LMS1585ACT-ADJ	Rails		
			LMS1585ACT-1.5	Rails		
			LMS1585ACT-3.3	Rails		
		-40°C to 125°C	LMS1585AIT-ADJ	Rails	1038	
			LMS1585AIT-1.5	Rails		
			LMS1585AIT-3.3	Rails		

Simplified Schematic

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Input to Output Voltage $(V_{IN} \text{ to GND})$ 13V

Power Dissipation (Note 2) In Junction Temperature (T_J)(Note 2) Storage Temperature Range Lead Temperature ESD Tolerance (Note 3)

Internally Limited 150°C -65°C to 150°C 260°C, 10 sec 2000V

Electrical Characteristics

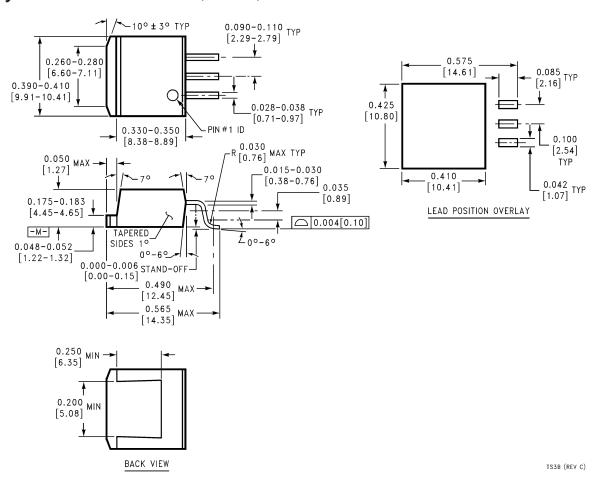
Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $0^{\circ}C$ to $125^{\circ}C$ for commercial grade and $-40^{\circ}C$ to $125^{\circ}C$ for industrial grade.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
V _{REF}	Reference Voltage	LMS1585A-ADJ				
		$V_{IN}-V_{OUT} = 3V$, $I_{OUT} = 10$ mA	1.238	1.25	1.262	V
		$10\text{mA} \le I_{OUT} \le 5\text{A}, \ 1.5\text{V} \le V_{IN} - V_{OUT} \le 5.75\text{V}$	1.225	1.250	1.275	V
		LMS1587-ADJ				
		$10\text{mA} \le I_{OUT} \le 3\text{A}, \ 1.5\text{V} \le V_{IN} - V_{OUT} \le 5.75\text{V}$	1.225	1.250	1.275	V
V _{OUT}	Output Voltage	LMS1585A-1.5				
		$I_{OUT} = 0mA, V_{IN} = 5V$	1.485	1.500	1.515	V
		$0 \le I_{OUT} \le 5A, 3V \le V_{IN} \le 7V$	1.470		1.530	V
		LMS1585A-3.3				
		$I_{OUT} = 0mA$, $V_{IN} = 5V$	3.267	3.300	3.333	V
		$0 \le I_{OUT} \le 5A, 4.75V \le V_{IN} \le 7V$	3.235	3.300	3.365	V
		LMS1587-1.5				
		$V_{IN} = 5V$, $I_{OUT} = 0mA$, $T_{J} = 25$ °C	1.485	1.500	1.515	V
		$0 \le I_{OUT} \le 3A$, $3V \le V_{IN} \le 7V$	1.470	1.500	1.530	V
		LMS1587-3.3				
		$0 \le I_{OUT} \le 3A$, $4.75V \le V_{IN} \le 7V$	3.235	3.300	3.365	V
ΔV_{OUT}	Line Regulation (Note 6)	LMS1585A/87-ADJ				
		$I_{OUT} = 10 \text{mA}, 2.75 \text{V} \le V_{IN} \le 7 \text{V}$		0.005	0.2	%
		LMS1585A/87-3.3				
		$I_{OUT} = 0$ mA, 4.75 V $\leq V_{IN} \leq 7$ V		0.005	0.2	%
		LMS1585A/87-1.5				
		$I_{OUT} = 0$ mA, 3 V \leq V $_{IN} \leq$ 7V		0.005	0.2	%
ΔV_{OUT}	Load Regulation	LMS1585A-ADJ			0.3	%
	(Note 6)	$V_{IN}-V_{OUT} = 3V$, $10mA \le I_{OUT} \le 5A$		0.05	0.5	
		LMS1585A-1.5		0.05	0.3	%
		$V_{IN} = 5V, 0 \le I_{OUT} \le 5A$			0.5	
		LMS1585A-3.3		0.05	0.3	
		$V_{IN} = 5V, 0 \le I_{OUT} \le 5A$		0.05	0.5	%
		LMS1587-ADJ		0.05	0.3	
		$V_{IN}-V_{OUT} = 3V$, $10mA \le I_{OUT} \le 3A$		0.05	0.5	%
		LMS1587-1.5		0.05	0.3	%
		$V_{IN} = 5V$, $0 \le I_{OUT} \le 3A$		0.05	0.5	%
		LMS1587-3.3		0.05	0.3	
		$V_{IN} = 5V, 0 \le I_{OUT} \le 3A$		0.05	0.5	%

Electrical Characteristics (Continued)

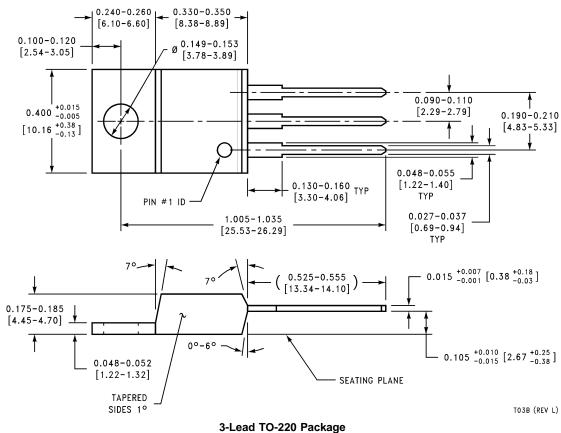
Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $0^{\circ}C$ to $125^{\circ}C$ for commercial grade and $-40^{\circ}C$ to $125^{\circ}C$ for industrial grade.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Unit
V_{IN} – V_{OUT}	Dropout Voltage	LMS1585A-ADJ/LMS1587-ADJ				
		$\Delta V_{REF} = 1\%$, $I_{OUT} = 3A$		1.15	1.3	V
		LMS1585A-3.3/LMS1587-3.3/				
		LMS1585A-1.5/LMS1587-1.5				
		$\Delta V_{OUT} = 1\%$, $I_{OUT} = 3A$		1.15	1.3	V
		LMS1585A-ADJ				
		$\Delta V_{REF} = 1\%$, $I_{OUT} = 5A$		1.2	1.4	V
		LMS1585A-1.5				
		$\Delta V_{OUT} = 1\%$, $I_{OUT} = 5A$		1.2	1.4	V
		LMS1585A-3.3				
		$\Delta V_{OUT} = 1\%$, $I_{OUT} = 5A$		1.2	1.4	V
I _{LIMIT}	Current Limit	LMS1585A-ADJ/LMS1585A-3.3				
		$V_{IN}-V_{OUT} = 5.5V$	5.0	6.6		A
		LMS1587-ADJ/LMS1587-3.3				
		$V_{IN}-V_{OUT} = 5.5V$	3.1	4.3		A
		LMS1585A-1.5				
		$V_{IN}-V_{OUT} = 5.5V$	3.100	3.750		A
		LMS1587-1.5				
		$V_{IN}-V_{OUT} = 5.5V$	3.100	3.750		A
	Minimum Load	LMS1585A/87-ADJ				
	Current (Note 7)	$1.5V \le V_{IN} - V_{OUT} \le 5.75V$		2.0	10.0	m/
	Quiescent Current	LMS1585A-3.3/LMS1587-3.3/				
	Quiososiii ourioiii	LMS1585A-1.5/LMS1587-1.5				
		$V_{IN} = 5V$		7.0	13.0	m/
	Thermal Regulation	T _A = 25°C, 30ms Pulse		0.003		%/\
	Ripple Rejection	LMS1585A-ADJ				
	Tuppio Trojodion	$f_{RIPPLE} = 120Hz$, $V_{IN}-V_{OUT} = 3V$, $I_{OUT} = 5A$				
		$C_{OUT} = 25\mu F$ Tantalum		72		dE
		LMS1585A-1.5				
		$f_{RIPPLE} = 120Hz$, $C_{OUT} = 25\mu F$ Tantalum, $I_{OUT} = 5A$	60	72		dE
		V _{IN} = 4.5V				
		LMS1585A-3.3				
		$f_{RIPPLE} = 120Hz$, $C_{OUT} = 25\mu F$ Tantalum,				
		I _{OUT} = 5A, V _{IN} = 6.3V		72		dE
		LMS1587-ADJ				
		$f_{RIPPLE} = 120Hz$, $V_{IN}-V_{OUT} = 3V$, $I_{OUT} = 3A$				
		$C_{OUT} = 25\mu F$ Tantalum		72		dE
		LMS1587-1.5				
		$f_{RIPPLE} = 120Hz$, $C_{OUT} = 25\mu F$ Tantalum,				
		I _{OUT} = 3A, V _{IN} = 4.5V	60	72		dE
		LMS1587-3.3				
		$f_{RIPPLE} = 120Hz$, $C_{OUT} = 25\mu F$ Tantalum,				
		$I_{OUT} = 3A$, $V_{IN} = 6.3V$		72		dE
	Adjust Pin Current			55	120	μA
	Adjust Pin Current	10mA ≤ I _{OUT} ≤ I _{FULLLOAD} ,				
	. tajast . iii Gairoitt	$1.5V \le V_{\text{IN}} - V_{\text{OUT}} \le 5.75V \text{ (Note 8)}$		0.2		μA
	Temperature Stability	IIN - OOT (1.000 0)		0.5		%
		T = 125°C 1000Hrs		0.03		-
	Long Term Stability	$T_A = 125^{\circ}\text{C}, 1000\text{Hrs}$				%
	RMS Output Noise	$10Hz \le f \le 10kHz$		0.003		%
	(% of V _{OUT})	1	1	1		1


Electrical Characteristics (Continued)

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, $0^{\circ}C$ to $125^{\circ}C$ for commercial grade and $-40^{\circ}C$ to $125^{\circ}C$ for industrial grade.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units
	Thermal Resistance	3-Lead TO-263: Control/Output Section			0.65/2.7	°C/W
	Junction-to-Case	3-Lead TO-220: Control/Output Section			0.65/2.7	°C/W


- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
- Note 2: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.
- Note 3: For testing purposes, ESD was applied using human body model, $1.5k\Omega$ in series with 100pF.
- Note 4: Typical Values represent the most likely parametric norm.
- Note 5: All limits are guaranteed by testing or statistical analysis.
- **Note 6:** Load and line regulation are measured at constant junction temperature, and are guaranteed up to the maximum power dissipation of 30W. Power dissipation is determined by the input/output differential and the output current. Guaranteed maximum power dissipation will not be available over the full input/output range.
- Note 7: The minimum output current required to maintain regulation.
- Note 8: I_{FULLLOAD} is 5A for LMS1585A and 3A for LMS1587.
- Note 9: Consult factory for other fixed voltage options.

Physical Dimensions inches (millimeters) unless otherwise noted

3-Lead TO-263 Package NSC Package Number TS3B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NSC Package Number T03B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 Res Tel: Fax Ema

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560

Tel: 81-3-5639-7560 Fax: 81-3-5639-7507