

ALUMINUM ELECTROLYTIC CAPACITORS

CAT. No. E1001G (Ver.3)

	INDEX	
	SERIES TABLE	
PRODUCT SEARCH	GROUP CHART	
	PRECAUTIONS AND GUIDELINES (Conductive Polymer)	
	PRECAUTIONS AND GUIDELINES (Aluminum Electrolytic Capacitor)	
	PART NUMBERING SYSTEM	
PRODUCTION GUIDE	ENVIRONMENTAL CONSIDERATION	
PRODUCTION GOIDE	PACKAGING	
	TAPING SPECIFICATIONS	
	AVAILABLE TERMINALS FOR SNAP-IN TYPE	
	RECOMMENDED REFLOW CONDITION	
	STANDARDIZATION	
	WORLD-WIDE MANUFACTURING LOCATIONS	

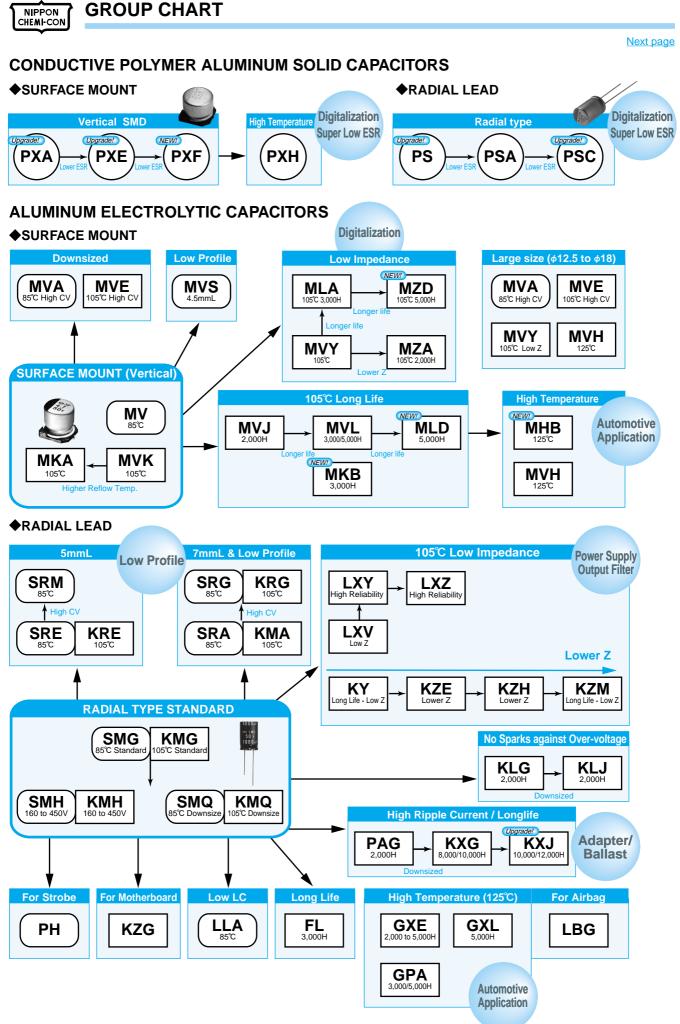
CAPACITOR SERIES TABLE, CONTENTS

Next page

										Next page
	Serie	9S	Features	Endurance (+R=With ripple)	Standard type	Low impedance	Solvent resistant	Terminal type	Rated voltage range (Vdc)	Capacitance range (µF)
		PXF (NEW!)	Vertical type, super low ESR	105℃ 2,000 hours		•	\bullet	SMD	2.5 to 6.3	220 to 1,000
		PXE (Upgrade!)	Vertical type, super low ESR	105℃ 2,000 hours		•	\bullet	SMD	2.5 to 16	33 to 2,700
	nductive	PXA (Upgrade!)	Vertical type, super low ESR	105℃ 1,000 to 2,000 hours	•	•	\bullet	SMD	2.5 to 25	3.3 to 1,500
	lymer	РХН	125°C Vertical type	125℃ 1,000 hours		•	\bullet	SMD	2.5 to 20	22 to 1,000
Ele	ctrolyte Type	PSC (Upgrade!)	Radial lead type, super low ESR, high ripple current	105℃ 2,000 hours		•	lacksquare	Radial	2.5 to 16	270 to 2,700
		PSA	Super low ESR, high ripple current	105℃ 2,000 hours		\bullet	ullet	Radial	2.5 to 16	47 to 1,000
		PS (Upgrade!)	Radial lead type, super low ESR	105℃ 2,000 hours	•	•	\bullet	Radial	2.5 to 35	18 to 1,500
		MVS	4.5mm height	85℃ 2,000 hours	•		\bullet	SMD	4 to 50	0.1 to 220
		MVA	5.5 to 22.0mm max. height, downsized	85°C 2,000 hours				SMD	4 to 450	0.1 to 10,000
		MV	5.5 to 10.5mm max. height	85°C 1,000 to 2,000 hours	•		\bullet	SMD	4 to 63	0.1 to 1,000
		MVE	5.5 to 22.0mm max. height, downsized	105℃ 1,000 to 2,000 hours				SMD	6.3 to 450	0.47 to 6,800
		Μ٧Κ	5.5 to 10.5mm max. height	105℃ 1,000 to 2,000 hours	•		\bullet	SMD	6.3 to 50	0.1 to 1,000
		МКА	5.5 to 10.5mm max. height	105°C 1,000 to 2,000 hours				SMD	6.3 to 50	0.1 to 1,000
Ţ		MZA	6.1 to 10.5mm max. height, very low impedance	105°C 2,000 hours		•	•	SMD	6.3 to 80	3.3 to 1,500
Surface Mount	Vertical	MVY	5.5 to 22.0mm max. height	105℃ 1,000 to 5,000 hours		•		SMD	6.3 to 100	1.0 to 8,200
ace	Туре	MZD (NEW!)	105°C5,000 hours, low impedance, long life	105℃ 5,000 hours		•	•	SMD	6.3 to 50	10 to 470
Surfa		MLA	Low impedance, long life	105℃ 3,000 hours		•	•	SMD	6.3 to 50	10 to 1,000
0		MVJ	6.0mm max. height	105℃ 2,000 hours			•	SMD	6.3 to 50	0.1 to 100
		MLD (NEW!)	105°C5,000 hours, long life	105℃ 5,000 hours			•	SMD	6.3 to 50	0.1 to 1,000
		MVL	6.0 to 10.5mm max. height 105°C 3,000 to 5,000 h				•	SMD	6.3 to 50	0.1 to 1,000
		MVH	6.0 to 22.0mm max. height	125°C 1,000 to 5,000 hours				SMD	10 to 450	3.3 to 4,700
		MHB (NEW!)	10.5mm max. height (Ask Engineering No767 in detail)	125℃ 2,000 hours			•	SMD	10 to 35	47 to 470
		MKB (NEW!)	10.5mm max. height	105℃ 3,000 hours			•	SMD	400	2.2 to 4.7
		MV-BP	5.5mm max. height, bi-polar	85°C 2,000 hours			•	SMD	4 to 50	0.1 to 47
		MVK-BP	6.0mm max. height, bi-polar	105°C 1,000 hours			•	SMD	6.3 to 50	0.1 to 47
		SRM	5mm height, downsized	85°C 1,000 hours			•	Radial	4 to 50	0.1 to 330
		SRE	5mm height	85°C 1,000 hours			-	Radial	4 to 50	0.1 to 100
		KRE	5mm height	105°C 1,000 hours				Radial	6.3 to 50	0.1 to 100
	Low Profile	SRA	7mm height	85°C 1,000 hours				Radial	4 to 63	0.1 to 470
	Low Frome	KMA	7mm height	105°C 1,000 hours				Radial	4 to 63	0.1 to 220
		SRG	φ4×7 to φ18×25mm, low profile	85°C 1,000 to 2,000 hours			•	Radial	4 to 50	0.1 to 10,000
		KRG	ϕ 4×7 to ϕ 18×25mm, low profile	105°C 1,000 hours			•	Radial	6.3 to 50	0.1 to 10,000
		SMQ	Downsized	85°C 2,000 hours			-	Radial	6.3 to 450	0.1 to 10,000
		KMQ	Downsized	105℃ 1,000 to 2,000 hours +R				Radial	6.3 to 450	0.1 to 47,000
		SMG	General, downsized	85°C 2,000 hours				Radial	6.3 to 450	0.1 to 39,000
e	Comoral	KMG		105℃ 1,000 to 2,000 hours +R						0.1 to 22,000
Miniature	General Purpose	SME	General, downsized General (Ask Engineering Bulletin No511 in detail)	85℃ 2,000 hours				Radial Radial	6.3 to 450 6.3 to 450	0.1 to 22,000
lini		KME	General (Ask Engineering Bulletin No512 in detail)	105℃ 1,000 hours +R	-					0.1 to 15,000
2		SME-BP	, , , ,					Radial	6.3 to 400 6.3 to 100	,
		SME-BP KME-BP	Bi-polar, general	85℃ 2,000 hours 105℃ 1,000 hours			•	Radial		0.47 to 6,800
		KME-BP KZM	Bi-polar, general				-	Radial	6.3 to 100	0.47 to 6,800
			Lowest impedance, long life	105°C 6,000 to 10,000 hours +R				Radial	6.3 to 50	27 to 10,000
		KZH	Lowest impedance, long life	105°C 5,000 to 6,000 hours +R				Radial	6.3 to 35	47 to 8,200
	High	KZE	Lowest impedance, long life	105°C 1,000 to 5,000 hours +R				Radial	6.3 to 100	6.8 to 6,800
	Frequency	KY	Low impedance, long life	105°C 4,000 to 10,000 hours +R	-			Radial	6.3 to 100	0.47 to 18,000
	Use		Low impedance, downsized	105℃ 2,000 to 8,000 hours +R			•	Radial	6.3 to 63	12 to 18,000
		LXY	Low impedance, high reliability	105°C 2,000 to 8,000 hours +R				Radial	10 to 63	10 to 8,200
		LXV	Low impedance high CV/ general	105℃ 2,000 to 5,000 hours +R	-		•	Radial	6.3 to 100	5.6 to 15,000
		KMF	Low impedance, high CV, general (Ask Engineering Bulletin No630 in detail)	105℃ 2,000 hours +R				Radial	160 to 450	2.2 to 220

: Promotional products

▲ : Some of range are solvent resistant.

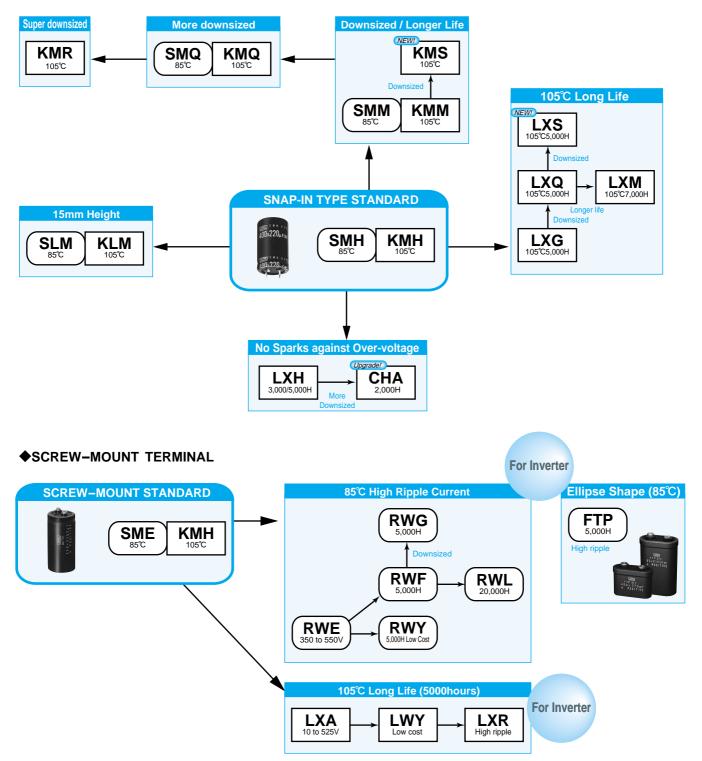

CAPACITOR SERIES TABLE, CONTENTS

Previous page

_										
	Serie	es	Features	Endurance (+R=With ripple)	Standard type	Low impedance	Solvent resistant	Terminal type	Rated voltage range (Vdc)	Capacitance range (μF)
		KXJ (Upgrade!)	Downsized, long life, for input filtering	105°C 10,000 to 12,000 hours +R				Radial	160 to 450	6.8 to 680
		KXG	Downsized, long life, for input filtering	105°C 8,000 to 10,000 hours +R		\bullet		Radial	160 to 450	6.8 to 330
		КМХ	Long life, for input filtering (Ask Engineering Bulletin No 646 in detail)	105°C 8,000 to 10,000 hours +R				Radial	160 to 450	3.3 to 680
		SMH	φ20×20 to φ22×50mm	85℃ 2,000 hours +R				Radial	160 to 450	33 to 470
		КМН	φ20×20 to φ22×50mm	105℃ 2,000 hours +R				Radial	160 to 450	33 to 470
	High	PAG	Low profile, for input filtering	105℃ 2,000 hours +R				Radial	200 to 450	18 to 560
a	Reliability	KLJ	Downsized, no sparks with DC overvoltage	105℃ 2,000 hours +R				Radial	200 & 400	4.7 to 330
Miniature		KLG	No sparks with DC overvoltage	105℃ 2,000 hours +R				Radial	200 & 400	22 to 330
lini		FL	Long life	105℃ 3,000 hours +R			\bullet	Radial	6.3 to 50	0.47 to 270
2		GPA	125℃, downsized, low impedance	125°C 3,000 to 5,000 hours +R		\bullet		Radial	25 to 50	470 to 6,800
		GXE	125℃, downsize, low impedance	125°C 2,000 to 5,000 hours +R		lacksquare		Radial	10 to 450	4.7 to 4,700
		GXL	125℃ Long life	125℃ 5,000 hours +R				Radial	10 to 50	100 to 1,000
		LBG	For airbag	105℃ 5,000 hours +R		lacksquare		Radial	25 & 35	1,000 to 11,000
	Special	KZG	For PC motherboard	105℃ 2,000 hours +R				Radial	6.3 to 16	470 to 3,300
	Application	LLA	Low DC leakage, general	85℃ 1,000 hours				Radial	6.3 to 50	0.1 to 15,000
		PH	For photo flash	55℃ 5,000 times charging				Radial	300 & 330	_
		KMR	105℃, Snap-in terminal, super downsized	105℃ 2,000 hours +R				Pin	160 to 450	100 to 3,900
		SMQ	Snap-in terminal, more downsized	85℃ 2,000 hours +R				Pin	160 to 450	82 to 3,900
		KMQ	Snap-in terminal, more downsized	105°C 2,000 hours +R				Pin	35, 50, 160 to 450	68 to 33,000
	General Purpose	SMM	Snap-in terminal, downsized	85℃ 3,000 hours +R				Pin	160 to 450	47 to 3,300
	Fulpose	KMS (NEW!)	Snap-in terminal, downsized	105℃ 3,000 hours +R				Pin	160 to 450	82 to 3,300
		КММ	Snap-in terminal, downsized	105°C 2,000 to 3,000 hours +R				Pin	160 to 450	39 to 3,300
		SMH	Snap-in terminal, general (Refer Engineering Bulletin No585 for 160 to 450V)	85℃ 2,000 hours +R				Pin	6.3 to 100	820 to 100,000
Sized		КМН	Snap-in terminal, general (Refer Engineering Bulletin No584 for 160 to 450V)	105℃ 2,000 hours +R				Pin	6.3 to 100	560 to 82,000
e Si	Low	SLM	15mm height	85℃ 2,000 hours +R				Pin	160 to 400	47 to 560
-arge	Profile	KLM	15mm height	105°C 2,000 hours +R				Pin	160 to 400	39 to 390
-		LXM	Long life	105°C 7,000 hours +R				Pin	160 to 450	47 to 2,200
		LXS (NEW!)	Snap-in terminal downsized	105℃ 5,000 hours +R	\bullet			Pin	160 to 450	82 to 3,300
		LXQ	Long life, downsized	105℃ 5,000 hours +R				Pin	160 to 450	82 to 2,700
	High	LXG	Long life	105℃ 5,000 hours +R				Pin	10 to 100	390 to 47,000
	Reliability		No sparks with DC overvoltage, downsized	105℃ 2,000 hours +R				Pin	200 to 450	56 to 1,200
		LXH	No sparks with DC overvoltage	105°C 3,000/5,000 hours +R				Pin	200 & 400	68 to 1,500
		RWE-LR	For air-conditioning (Ask Engineering Bulletin No768 in detail)	85°C 3,000 hours +R				Lug	250 to 450	330 to 2,200
	General	SME	Screw terminal, general	85°C 2,000 hours +R				Screw	10 to 250	560 to 680,000
æ	Purpose	КМН	Screw terminal, general	105℃ 2,000 hours +R	\bullet			Screw	10 to 400	180 to 680,000
Screw-mount Terminal Type		RWG	85℃, high ripple, downsized, long life	85°C 5,000 hours +R				Screw	350 to 450	1,500 to 18,000
nal		RWF	High ripple, long life	85°C 5,000 hours +R				Screw	350 to 450	820 to 22,000
rmi		RWE	High ripple	85°C 2,000 hours +R				Screw	350 to 550	100 to 12,000
t Te		RWY	High ripple, long life, low cost	85°C 5,000 hours +R				Screw	350 to 450	500 to 14,000
uno	For Inverter	RWL	High ripple, long life	85°C 20,000 hours +R				Screw	350 to 450	2,200 to 12,000
n-n		FTP	Ellips can shape, high ripple	85°C 5,000 hours +R				Screw	63 to 450	270 to 21,000
crev		LXA	Long life	105°C 2,000/5,000 hours +R				Screw	10 to 525	330 to 390,000
Ś		LXR	High ripple, long life	105℃ 5,000 hours +R				Screw	350 to 450	2,200 to 15,000
		LWY	Low cost (Ask Engineering Bulletin No714 in detail)	105℃ 5,000 hours +R				Screw	350 to 450	460 to 13,000
			/	1						,

: Promotional products

▲ : Some of range are solvent resistant.



(1/2)

ALUMINUM ELECTROLYTIC CAPACITORS

♦SNAP-IN

NIPPON CHEMI-CON

Previous page

Global code system

The current part numbering system has been changed to a new system for global coding. We assigned an environment friendly specification to applicable standard products.

Categories

	6 7 8 9 10 11 12 13 14 15									
Code Details										
 Α	Conductive Polymer Aluminum Solid Capacitors (Polar)									
E	Aluminum Electrolytic Capacitors (Polar)									
В	Aluminum Electrolytic Capacitors (Bi-polar)									
К	Multilayer Ceramic Capacitors									
F,W	Film Capacitors									
D	Electric Double Layer Capacitors									
Т	Metal Oxide Varistors									
L	Amorphous Choke Coils									

* For digits 2 to 18, please see "Product code guide".

●Example

Product type	Global code (Example)	Conventional part number (Ref.)
Surface mount type	EMV-160ADA100MD55G	MV16VC10MD55E0
Radial lead type	ESMG6R3ETC102MHB5D	TC04RSMG6. 3VB1000MF50E0
Snap-in type	ESMQ201VSN471MP30S	SMQ200VSSN470M22BE0
Screw mount terminal type	ERWE551LGC821MCD0M	RWE550LGSN820MCC13EA

Environment friendly capacitors

Nippon Chemi-Con always considers the environment in product materials, designs and manufacturing. In fact, our factories already have received ISO 14000 certificate. Cadmium, Mercury, Hexavalent Chromium, PBB and PBDE have never been used in our products. Furthermore, since 2004, lead-containing materials have been eliminated from all our aluminum electrolytic capacitors including Conductive Polymer Aluminum Solid Capacitors to comply with RoHS.

Lead free and Non-PVC Products

1. Lead wire (Plating)

Cat	egory	Plating materia	l on lead wires
	egory	Original type	Lead-free type
Chip	case code : B55 to JA0		Sn-Bi
Cilip	case code : KE0 to MN0		Sn100%
Radial	case dia : ∼φ8	Sn-Pb	Sn-Bi
Raulai	case dia : ¢10∼		Sn100%
Snap-in			Sn100%
Screw-Mount		Originally lead free	Originally lead free

*Please consult with us when you need "Lead-free parts" other than the above mentioned terminal plating materials. (Note) Pb : lead, Sn : Tin, Bi : Bismuth

2. Sleeve

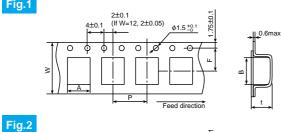
Cat	egory	Sleeve material						
Cat	egory	Original type	Lead-free type					
Chip		Sleeveless(Resin case)	Sleeveless(Resin case)					
Dedial	φ8×5L	Sleeveless(Coating case)	Sleeveless(Coating case)					
Radial	except ø8×5L	PVC	PET					
Snap-in		PVC	PET					
Screw-Mount		PVC	PVC(Lead-free)					

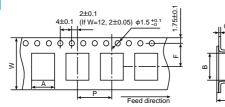
* Please consult with us when you need "Non-PVC parts" other than the above mentioned outer sleeve materials.

The colors of a PET sleeve are "Black", "Brown", and "Dark blue".

Standard designs of "lead-free" Snap-in type are not equipped with a top disk.

Please consult with us when you need nonflammable grade for outer sleeve material.


Identification of friendly parts is given by a supplement code (18th digit) of the global code. For details, please refer to "Product code guide" for each type.


TAPING SPECIFICATIONS SURFACE MOUNT TYPE (TAPING)

♦CARRIER TAPE [mm]

NIPPON CHEMI-CON

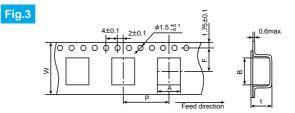
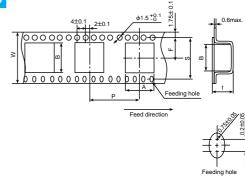
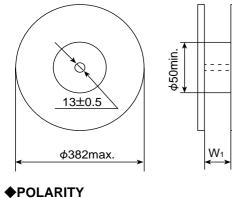



Fig.4

[mm]


	Items	W	A	В	F	Р	t	S	E
Series		±0.3	±0.2	±0.2	±0.1	±0.1	±0.2	±0.1	- Fig.
	B55	12.0	3.5	3.5	5.5	8.0	5.9	—	1
	D46	12.0	4.7	4.7	5.5	8.0	4.9	—	1
	D55	12.0	4.7	4.7	5.5	8.0	5.7	—	1
	D60,D61	12.0	4.7	4.7	5.5	8.0	6.3	—	1
	D73	12.0	4.7	4.7	5.5	8.0	7.5	-	1
	E46	12.0	5.7	5.7	5.5	12.0	4.9	-	2
	E55	12.0	5.7	5.7	5.5	12.0	5.7	-	2
	E60,E61	12.0	5.7	5.7	5.5	12.0	6.3	-	2
	E73	16.0	5.7	5.7	7.5	12.0	7.5	-	2
Alchip™	F45	16.0	7.0	7.0	7.5	12.0	4.8	-	2
MVS/MVA	F46	16.0	7.0	7.0	7.5	12.0	4.9	-	2
MV/MVE	F55	16.0	7.0	7.0	7.5	12.0	5.7	-	2
MVK/MKA	F60,F61	16.0	7.0	7.0	7.5	12.0	6.3	-	2
MZA/MVY MZD/MLA	F73	16.0	7.0	7.0	7.5	12.0	7.5	-	2
MVJ/MLD	F80	16.0	7.0	7.0	7.5	12.0	8.2	-	2
MVL/MVH	F90	16.0	7.0	7.0	7.5	12.0	9.2	_	2
MKB/MV-BP	H63	16.0	8.7	8.7	7.5	12.0	6.8	_	2
MVK-BP	H70	24.0	8.7	8.7	11.5	12.0	7.3	_	2
NPCAP™	H80	24.0	8.7	8.7	11.5	12.0	8.3	_	2
PXF/PXE	HA0	24.0	8.7	8.7	11.5	16.0	11.0	_	3
PXA/PXH	HC0	24.0	8.7	8.7	11.5	16.0	12.8	_	3
	J80	24.0	10.7	10.7	11.5	16.0	8.3	_	3
	JA0	24.0	10.7	10.7	11.5	16.0	11.0	_	3
	JC0	24.0	10.7	10.7	11.5	16.0	12.8		3
	KE0	32.0	13.4	13.4	14.2	24.0	14.0	28.4	4
	KG5	32.0	13.4	13.4	14.2	24.0	16.5	28.4	4
	LH0	44.0	17.5	17.5	20.2	28.0	16.8	40.4	4
	LN0	44.0	17.5	17.5	20.2	28.0	22.1	40.4	4
	MHO	44.0	19.5	19.5	20.2	32.0	17.1	40.4	4
	MN0	44.0	19.5	19.5	20.2	32.0	22.1	40.4	4

* Regarding to taping for LH0/LN0/MH0/MN0, please consult with us.

PACKAGING

REEL DIMENSIONS [mm]

NIPPON CHEMI-CON

QUANTITY PER REEL/BOX

Series	Size code	Quantity (pcs/reel)	Quantity (pcs/box)	W₁ (mm)
	B55	2,000	10,000	14
	D46,D55,D60,D61	2,000	10,000	14
	D73	1,500	7,500	14
	E46,E55,E60,E61	1,000	5,000	14
Alchip™	E73	1,000	5,000	18
MVS/MVA	F46,F55,F60,F61,F73	1,000	5,000	18
MV/MVE	F80	900	4,500	18
MVK/MKA MZA/MVY	F90	800	4,000	18
MZD/MLA	H63	1,000	5,000	18
MVJ/MLD	HA0	500	1,500	26
MVL/MVH	JA0	500	1,500	26
MKB/MV-BP	KE0	200	600	34
MVK-BP	KG5	150	450	34
	LH0	125	250	46
	LN0	75	150	46
	МНО	125	250	46
	MNO	75	150	46
	D55	2,000	20,000	14
	E60,E61	1,000	10,000	14
	F45,F55,F60,F61	1,000	7,000	18
	F80	900	6,300	18
NPCAP™	H70	1,000	6,000	26
PXF/PXE	H80	900	5,400	26
PXA/PXH	HA0	500	3,000	26
	HC0	400	1,200	26
	J80	500	3,000	26
	JA0	500	3,000	26
	JC0	400	1,200	26

SURFACE MOUNT TYPE (TRAY)

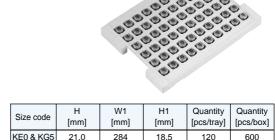
Feed Direction

0

00000 Q

♦DIMENSIONS [mm]

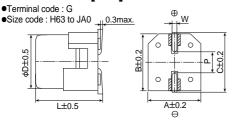

Alchip™- MVS/MVA/MV

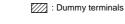

MVE/MVK/MKA

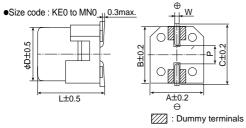
MZA/MVY/MZD

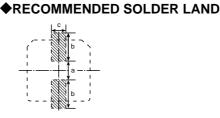
MLA/MVJ/MLD MVL/MVH/MKB MV-BP/MVK-BP NP CAPTM PXF/PXE/PXA/PXH

(Vertical)






 			_	_		
MH0 & MN0	28.0	284	24.0	60	300	
LH0 & LN0	28.0	284	24.0	80	400	
		-0.			000	


VIBRATION RESISTANT STRUCTURE (Terminal code : G)

DIMENSIONS [mm]

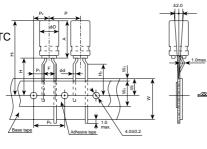
•TRAY CODE : TR

Solder land on PC board

Size			Di	imensi	ons of	products (mr	n)			Solde	Solder land (mm)			
code	D	L	Α	В	С	W	Р	(a)	(b)	а	b	С		
H63	8.0	6.0	8.3	8.3	9.0	0.5 to 0.8	2.3	(0.4)	(1.5)	2.3	4.5	2.5		
HA0	8.0	10.0	8.3	8.3	9.0	0.7 to 1.1	3.1	(0.5)	(1.8)	3.1	4.2	3.5		
JA0	10.0	10.0	10.3	10.3	11.0	0.7 to 1.1	4.5	(0.5)	(2.1)	4.5	4.4	3.5		
KE0	12.5	13.5	13.0	13.0	13.7	1.0 to 1.3	4.2	(1.3)	(3.0)	3.4	6.3	9.3		
KG5	12.5	16.0	13.0	13.0	13.7	1.0 to 1.3	4.2	(1.3)	(3.0)	3.4	6.3	9.3		
LH0	16.0	16.5	17.0	17.0	18.0	1.0 to 1.3	6.5	(2.0)	(3.0)	4.7	7.8	9.6		
LN0	16.0	21.5	17.0	17.0	18.0	1.0 to 1.3	6.5	(2.0)	(3.0)	4.7	7.8	9.6		
MH0	18.0	16.5	19.0	19.0	20.0	1.0 to 1.3	6.5	(2.0)	(4.0)	4.7	8.8	9.6		
MN0	18.0	21.5	19.0	19.0	20.0	1.0 to 1.3	6.5	(2.0)	(4.0)	4.7	8.8	9.6		

(); Ref.

TAPING SPECIFICATIONS


RADIAL LEAD TYPE (TAPING)

♦DIMENSION [mm]

 Fig.1

 Taping Code : TA, TC

 φD=φ4 to 8

Fig.3 Taping Code : TD φD=φ6.3 to 12.5

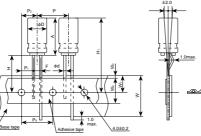
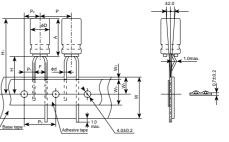
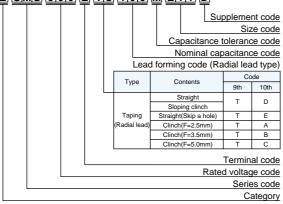



Fig.2 Taping Code : TD φD=φ5 φD×L=φ4×7

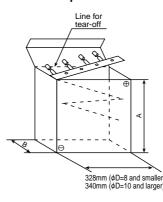
Fig.4 Taping Code : TE φD=φ12.5

Code	Taping	Case	size	φd	Р	Po	P ₁	P ₂	F	w	Wo	W1	W ₂	н	Ho	H1	
Code	Code	φD	Α	φα	Р	P 0	P 1	P 2	Г	vv	VV 0	VV 1	VV2			П 1	Fig.
tol.			_	±0.05	±1.0	±0.2	±0.7	±1.0	+0.8 -0.2	±0.5	min.	±0.5	max.	±0.75	±0.5		
	TA TC		5	0.45	12.7	12.7	5.1 3.85	6.35	2.5 5	18.0	6.0	9.0	1.5	18.5 17.5	16.0		1
	TD TC	4	7	0.45	12.7	12.7	5.1 3.85	6.35	2.5 5	18.0	6.0	9.0	1.5	18.5 *1 17.5	16.0		2
	TD TC		11.5	0.45	12.7	12.7	5.1 3.85	6.35	2.5 5	18.0	10.0	9.0	1.5	17.5	16.0	ം	1
a	TD TC	-	5 to 7	0.45	12.7	12.7	5.1 3.85	6.35	2.5 5	18.0	6.0	9.0	1.5	<u>18.5</u> 17.5	 16.0	specs.	2
Nominal	TD TC	5	9 to 15	0.5	12.7	12.7	5.1 3.85	6.35	2.5 5	18.0	10.0	9.0	1.5	18.5	 16.0		2
۶	TD TC		5 to 7	0.45	12.7	12.7	5.1 3.85	6.35	2.5 5	18.0	6.0	9.0	1.5	<u>18.5</u> 17.5	 16.0	chir	3
	TD TC	6.3	9 to 15	0.5	12.7	12.7	5.1 3.85	6.35	2.5 5	18.0	10.0	9.0	1.5	18.5	 16.0	=H+A n mac	3
	TD TC		5	0.45	12.7	12.7	5.1 3.85	6.35	2.5 5	18.0	6.0	9.0	1.5	<u>18.5</u> 17.5	 16.0	tion =	3
	TC	8	7	0.45	12.7	12.7	3.85	6.35	5	18.0	6.0	9.0	1.5	17.5	16.0	ser	1
	TD TC		9 to 20	0.6	12.7	12.7	3.85	6.35	3.5 5	18.0	10.0	9.0	1.5	20.0	 16.0	i i≓	1
tol.		±0.5	max.	±0.05	±1.0	±0.3	±0.7	±1.3	+0.8 -0.2	±0.5	min.	±0.5	max.	+2.0 -0	—	H1=H+A Check insertion machine	
lal	TD	10	21	0.6	12.7	12.7	3.85	6.35	5	18.0	12.5	9.0	1.5	18.0	—		3
Nominal	TD	10 5	26	0.6	^{*2} 15	15	5.0	7.5	5	18.0	12.5	9.0	1.5	18.0	—		3
Ŷ	TE	12.5	20	0.6	25.4	12.7	3.85	6.35	5	18.0	12.5	9.0	1.5	18.0	_		4


* 1 : For ϕ 4X7 (A=7, F=25), shall be 18.5^{-0.5/+0.75} (Taping code : TD) at Fig.2.

* 2 : P=15 taping is not standard. Use P=25.4 taping.

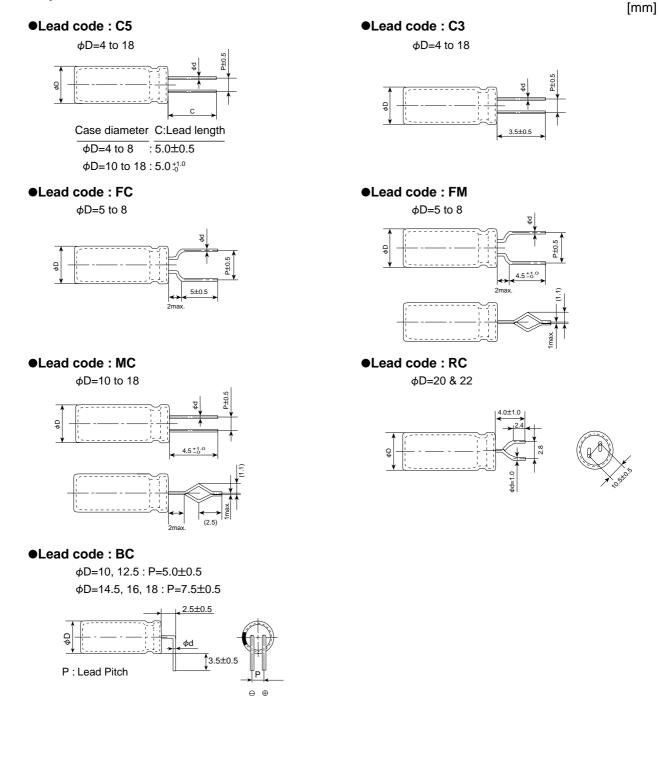
TAPING CODE


Example

QUANTITY PER AMMO PACK

Ammo pack box

Typical example


Case size φD ×L(mm)		A (mm)	B (mm)	Quantity (pcs.)
φ4	L=5 & 7mm	183	42	2.000
Ψ4	L=11.5mm	183	51	2,000
	L=5 & 7mm	232	42	
φ5	L=9 to 15mm	232	51	2,000
	L=17mm	235	53	
	L=5 & 7mm	282	42	
φ6.3	L=9 to 15mm	284	51	2,000
	L=17mm	284	55	
	L=5 & 7mm	232	42	
φ8	L=9 to 15mm	232	51	1,000
	L=17 & 20mm	235	53	
	L=≦16mm	308	56	800(500)*
φ10	L=17 to 20mm	308	62	800
φ10	L=21 to 25mm	308	67	800
	L=26 to 30mm	308	71	500
φ12.5	L=≦16mm	308	62	500
ψι2.5	L=17 to 25mm	308	67	500

*Minimum order quantity for PSC/PSA/PS series

NIPPON CHEMI-CON PACKAGING

RADIAL LEAD TYPE (CUT/FORMED LEAD)

The following lead configurations are available. When ordering, please indicate the type of lead configurations by using the appropriate supplement code, such as C5, FC, MC or RC in the product part number.

MINIMUM ORDER QUANTITY

Please order by minimum order quantity.

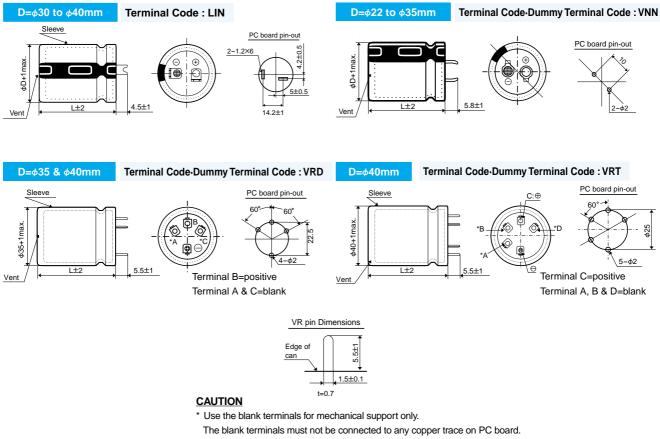
♦SURFACE MOUNT

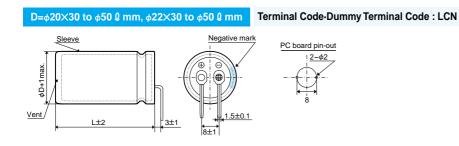
Vertical

		Quanti	ty (pcs)
Series	Size code	Taping	Tray (pcs/box)
	B55	2,000	-
	D46, D55, D60, D61	2,000	_
	D73	1,500	_
	E46, E55, E60, E61, E73	1,000	_
A TM	F45, F46, F55, F60, F61, F73	1,000	_
Alchip™ MVS/MVA/MV	F80, H80	900	_
MVE/MVK/MKA	F90	800	_
MZA/MVY/MZD	H63, H70	1,000	_
MLA/MVJ/MLD	HA0	500	_
MVL/MVH/MKB MV-BP/MVK-BP	HC0	400	_
	J80, JA0	500	_
NPCAP™	JC0	400	_
PXF/PXE/PXA	KE0	200	600
РХН	KG5	150	600
	LH0	125	400
	LNO	75	400
	MH0	125	300
	MN0	75	300

♦RADIAL

Size		Quantity (pcs)		
		Bagged ^{*1}	Taping	
φ4		200	2,000	
φ5		200	2,000	
φ 6.3		200 (200)*2	2,000 (2,000)*2	
φ8		200 (100)*2	1,000 (1,000)*2	
φ10	Height≦25mm	200 (100)*2	800 (500)*2	
φισ	Height≧30mm	200	500	
φ12.5		100	500	
φ 14.5		50	250	
φ16		50	250	
φ18		50	250	

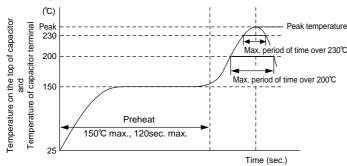

*1 Standard bagged quantity. *2 Minimum order quantity for PSC/PSA/ PS series.



AVAILABLE TERMINALS FOR SNAP-IN TYPE [mm]

The following terminal options can be selected. Please consult with us before purchase.

Be sure to electrically isolate from the negative and the positive terminals.



RECOMMENDED REFLOW SOLDERING CONDITIONS

NPCAPTM-**PXF/PXE/PXA/PXH**Series

The following conditions are recommended for air or infrared reflow soldering PXF/PXE/PXA/PXH series onto a glass epoxy circuit board of 90×50×0.8mm (with resist) by cream solder. The temperatures shown are the surface temperature values on the top of the can and temperature of capacitor terminal.

Series	Peak temp.	Max.Period of time over 230°C	Max.Period of time over 200°C	Remarks
PXF PXE	250℃ (240℃)	40sec (30sec)	60sec (50sec)	The times of reflow soldering : once
PXA PXH	250℃ (240℃)	30sec	50sec	The times of reflow soldering : twice

) : Applies for 20V 82µF(J80) and 25V 39µF(J80)

Recommended Solder Land on PC Board

PRECAUTIONS FOR USERS

Soldering method

The capacitors of NPCAP™-PXF/PXE/PXA/PXH series have no capability to withstand such dip or wave soldering as totally immersing components into a solder bath.

Reflow soldering

Reflow the capacitors within Recommended Reflow Soldering Conditions. Verify there is no temperature stress to the capacitors because the following differences might degrade capacitors electrically and mechanically. Please consult with us if other reflow conditions are employed.

- 1.Location of components : Temperature increases at the edge of PC board more than the center.
- 2.Population of PC board : The lower the component population is, the more temperature rises.
- 3.Material of PC board : A ceramic-made board needs more heat than a glass epoxy-made board. The heat increase may cause damage to the capacitors.
- 4. Thickness of PC board : A thicker board needs more heat than a thinner board. The heat may damage the capacitors.
- 5.Size of PC board : A larger board needs more heat than a smaller board. The heat may damage the capacitors.
- 6.Solder thickness
- If very thin cream solder paste is to be used for SMD types, please consult with us.
- 7.Location of infrared ray lamps : IR reflow as well as hot plate reflow heats only on the reverse side of the PC board to lessen heat stress to the capacitors.

Rework of soldering

Use a soldering iron for rework. Do not exceed an iron tip temperature of $380\pm10^{\circ}$ C and an exposure time of 3 ± 0.5 seconds.

Mechanical stress

Do not grab the capacitors to lift the PC board and give stress to the

capacitor. Avoid bending the PC board. This may damage the capacitors.

Cleaning assembly board

Immediately after solvent cleaning, remove residual solvent with an air knife for at least 10 minutes. If the solvent is insufficiently dry, the capacitors may corrode.

Coating on assembly board

1.Before curing coating material, remove the cleaning solvents from the assembly board.

2.Before conformal coating, a chloride free pre-coat material is recommended to decrease the stress on the capacitors.

Molding with resin

Internal chemical reaction gradually produces gas in the capacitor; increasing internal pressure. If the end seal of the capacitor is completely coverd by resin the gas will be unable to escape causing a potentially dangerous situation. The chlorine in resin will penetrate the end seal, reach the element, and damage of the capacitor.

Glue

The followings are requirements for glue. 1.A low curing temperature over a short period of time

2.Strong adhension and heat resistance after curing

3.Long shelf life

4.No corrosion

Others

Refer to Precautions for Users of Aluminum Electrolytic Capacitors.

Terminal code : G

b

4.5

42

4.4

6.3

7.8

8.8

CAT. No. E1001G

с

2.5

3.5

3.5

9.3

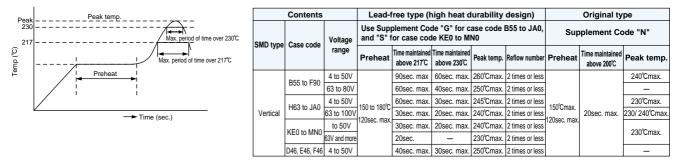
9.6

9.6

RECOMMENDED REFLOW SOLDERING CONDITIONS

Alchip[™]-MVS/MVA/MV/MVE/MVK/MKA/MZA/MVY/MZD/MLA/MVJ/MLD/MVL/MVH/MKB/

MV-BP/MVK-BP


The following conditions are recommended for air convection and infrared reflow soldering on the SMD products on to a glass epoxy circuit boards by cream solder. The dimensions of the glass epoxy boards with resist are 90×50×0.8mm for B55 to KG5 case code SMD capacitors and 180×90×0.8mm for LH0 to MN0 case codes SMD capacitors.

The temperatures shown are the surface temperature values on the top of the can and on the capacitor terminals.

Reflow should be performed twice or less.

Please ensure that the capacitor became cold enough to the room temperature (5 to 35°C) before the second reflow. Consult with us when performing reflow profile in IPC / JEDEC (J-STD-020)

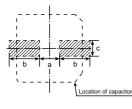
Recommended soldering heat conditions (Except for Conductive Polymer Aluminum Solid Capacitors)

B55

H63

HA0

JA0


KE0, KG5

LH0, LN0

MHO, MNO

Recommended Solder Land on PC Board

Series : MVS/MVA/MV/MVE/MVK/MKA/MZA/MVY/MZD/ MLA/MVJ/MLD/MVL/MVH/MKB/MV-BP/MVK-BP

: Solder land on PC board

PRECAUTIONS FOR USERS

Soldering method

The capacitors of Alchip-series have no capability to withstand such dip or wave soldering as totally immerses components into a solder bath.

Reflow soldering

Reflow the capacitors within recommended reflow soldering conditions. Verify there is no temperature stress to the capacitors because the following differences might degrade capacitors electrically and mechanically. Please consult us if other reflow conditions are employed.

- 1.Location of components : Temperature increases at the edge of PC board more than the center.
- 2. Population of PC board : The lower the component population is, the more temperature rises.
- 3.Material of PC board : A ceramic made board needs more heat than a glass epoxy made board. The heat increase may cause damage to the capacitors.
- 4. Thickness of PC board : A thicker board needs more heat than a thinner board. The heat increase may damage the capacitors
- 5.Size of PC board : A larger board needs more heat than a smaller board. The heat increase may damage the capacitors.
- 6.Solder thickness
- If very thin cream solder paste is to be used for SMD types, please consult with us.
- 7.Location of infrared ray lamps : IR reflow as well as hot plate reflow heats only on the reverse side of the PC board to lessen heat stress to the capacitors.

Case code

F46, F55, F60, F61, F73, F80, F90

D46, D55, D60, D61, D73

E46, E55, E60, E61, E73

Use a soldering iron for rework. Do not exceed an iron tip temperature of 380±10℃ and an exposure time of 3±0.5 seconds.

Mechanical stress

Do not use the capacitors for lifting the PC board and give stress to the capacitor. Avoid bending the PC board. This may damage the capacitors. Cleaning assembly board

Immediately after solvent cleaning, remove residual solvent with an air

knife for at least 10 minutes. If the solvent is insufficiently dry, the capacitors may corrode.

Coating on assembly board

1.Before curing coating material, remove the cleaning solvents from the assembly board.

2.Before conformal coating, a chloride free pre-coat material is recommended to decrease the stress on the capacitors.

Molding with resin

Internal chemical reaction gradually produces gas in the capacitor; then, increasing internal pressure. If the end seal of the capacitor is completely coverd by resin the gas will be unable to escape causing a potentially dangerous situation. The chlorine contained resin will penetrate into the end seal, reach the inside element, and cause damage of the capacitor.

Others

(2/2)

Refer to Precautions for Users of Aluminum Electrolytic Capacitors.

Rework of soldering

Terminal code : A

b

2.2

2.6

3.0

35

4.5

42

4.4

5.7

6.9

7.9

С

1.6

1.6

1.6

16

1.6

2.2

2.2

2.5

2.5

2.5

а

2.3

3.1

4.5

3.4

4.7

4.7

а

0.8

1.0

1.4

19

2.3

3.1

4.5

4.0

6.0

6.0

STANDARDIZATION

The following series are discontinued. Please use the replacements in the table.

50 V

CONDUCTIVE POLYMER REPLACEMENT

Discontinued series Characteristics		Replacements	
PX	105℃ Super low ESR	PXA	

♦LEAD TYPE REPLACEMENTS

Discontinued series	Characteristics	Replacements	Discontinued series	Characteristics	Replacements
SL			KX		
SM		0140	KXC		
SMC	85℃ standard	SMG	GX		GXE
SME			EX	High heat resistance	GXE
KM			GXC		
KMC		KMG GXI	GXD		
KME	105℃ standard		EU	High temperature performance	LXY
USM		LXY	LL		LLA/KY
BSM		LAT	LR	Low leakage current	LLA
SHA	95℃ L=7mm	LXY/LXZ	KHA		КХG
SM-BP	85℃ bi-polar	SME-BP	KXB	High ripple current	
KM-BP	105℃ bi-polar	KME-BP	KMF(160 to 450Vdc)		
SR			BX	JIS B-X characteristics	KMG
SRC	85℃ low profile	SRG	SM(VP-type)	- 85℃ large radial	SMG/SMH
SRJ			SRF		
SX			GX-VH	High operating temperature	
SXA			SD	2 volt	
SXC			SB	For memory backup	
RX			KRL	105℃ low leakage current	*
RXC	Low impedance	KY/LXV	KSA	Bi-polar high ripple	
LXE			SRE(5.2L)	L=5.2mm	
LXJ			FTK	Appropriate shape	
SXE					
KMF(6.3 to 100Vdc)					
SXF	Low impedance				
LXF	Long life	LXY			
TXF					
LXA	l ong life	KY/ LXY			

♦SNAP-IN REPLACEMENTS

Long life

LX(10 to 63Vdc)

SCREW-MOUNT TERMINAL REPLACEMENTS

Discontinued series	Characteristics	Replacements	Discontinued series	Characteristics	Replacements	
SM			EW			
SME	85℃ standard	SMH/SMM	PW		0115	
SMG			MW	85°C standard	SME	
KM			GW			
KME	105℃ standard	KMH/KMM	SW	100℃	KMH	
KMG			RW	For inverters	RWE/RWF	
NM	Long case size		RWA	For inverters		
NMA	Long case size	SMH	KM	High roliability	КМН	
BK	Long height		KME	High reliability		
NM-HR	High ripple current	KMH/KMM	LX	105℃ Long life	LXA/LXR	
BX	JIS B-X characteristics		KW	Low impedance, Long life	*	
LX	Long life	LXG/LXQ	FW	Low impedance		
LXA	Long me					
KLG	Overvoltage resistant design	СНА				
KLH	Overvollage resistant design	ОПА				
RZ	Low impedance					
GX	High heat resistance	*				
VD	voltage doubler rectifier circuit					

* Please contact us.

Korea factory (China factory (Wuxi) China factory (Wuxi) Malaysia factory Malaysia factory Indonesia factory	

♦AVAILABLE ITEMS BY MANUFACTURING LOCATIONS

Classification	Series	Korea factory	China factory (Qingdao)	China factory (Wuxi)	Indonesia factory	Taiwan factory	Malaysia factory	U.S.A. factory
SMD	MV			•	•			
Low Profile	SRE				•			
	SRA	•	•		•			
	KMA	•	•		•			
	SRG	•	•		•			
General	SMG	•	•	•	•	•		
purpose	KMG	•	•	•	•			
	KME	•	•	•	•			
Bi-polar	SME-BP	•	•		•	•		
	KME-BP	•	•		•	•		
Low	KMF			•	•	•		
impedance, High	LXV			•		•		
ripple	KY	•		•	•	•		
	KZE	•		•	•	•		
	КМХ			•		•		
Snap-in	SMQ			•			•	
	KMQ			•			•	
	SMH			•			•	•
	КМН			•			•	•
	SMM						•	
	КММ						•	
Screw-mount	КМН							
Terminal	RWE							\bullet
	RWF							•
	RWL							•
	LXA							•

Please be sure to contact us before ordering as our product range is continuously improved and the product you require may have been superseded.

PRECAUTIONS AND GUIDELINES (Conductive Polymer)

The NPCAP[™] is a Conductive Polymer Solid Aluminum Capacitor that uses highly conductive polymer electrolytic material. Please read the following in order to get the most out of your NPCAP[™] capacitor.

For aluminum electrolytic capacitors, please refer to PRECAUTIONS AND GUIDELINES.

Designing Device Circuits

1 Types of Circuits Where NPCAP[™] Capacitors are Not to be Used

The leakage current in conductive polymer solid aluminum capacitors (hereafter called capacitors) may vary depending on thermal stresses during soldering. Avoid the use of capacitors in the following types of circuits:

- a) High-impedance circuits that are to sustain voltages.
- b) Coupling circuits
- c) Time constant circuits
- Because the capacitance varies depending on the environment the capacitors are used in, there is a possibility that the capacitor can affect a time constant circuit where sensitivity to variation in capacitance is required.
- d) Other circuits that are significantly affected by leakage current

2 Circuit Design

Verify the following before designing the circuit:

- a) The electrical characteristics of the capacitor will vary depending on differences in temperature and frequency. Only design your after verifying the scope of these factors.
- b) When connecting two or more capacitors in parallel, ensure that the design takes current balancing into account.
- c) When two or more capacitors are connected in series, variability in applied voltage may cause over-voltage conditions. Contact Nippon Chemi-Con before using capacitors connected in series.

3 Use in High Reliable and Critical Applications

Consult with Nippon Chemi-Con before using these capacitors in applications involving human life: Aviation/space equipment, Nuclear power equipment, Medical equipment and Automotive equipment, or in applications where capacitor failure could have a major impact.

4 Polarity

The NPCAPTM is a polarized solid aluminum electrolytic capacitor. Do not apply either reverse voltages or AC voltages to the polarized capacitors, using reversed polarity may cause a short circuit. Refer to the catalog, product specifications or capacitor body to confirm the polarity prior to use.

5 Operating Voltage

Do not apply DC voltages exceeding the full rated voltage. The peak voltage of superimposed AC voltages (ripple voltages) on DC voltages must not exceed the full rated voltage. While there are specifications for surge voltages exceeding the rated voltage, usage conditions apply, and continued operation for extended periods of time under such conditions cannot be guaranteed.

6 Ripple Current

Do not apply currents in excess of the rated ripple current. The superimposition of a large ripple current increases the rate of heating within the capacitor. This may reduce the service life of the capacitor or damage the capacitor.

7 Operating Temperature

Do not use the capacitor at high temperatures (temperatures exceeding the maximum temperature for the capacitor category). Use of the capacitor outside of the maximum temperature for the capacitor category may decrease the service life of the capacitor.

8 Charging and Discharging the Capacitor

Do not use the NPCAP[™] capacitor in circuits where the capacitor is repetitively charged and discharged rapidly. Repetitively charging and discharging the capacitor rapidly may reduce the capacitance or may cause damage due to internal heating. Use of a protective circuit to ensure reliability is recommended when rush currents exceed 20A.

9 Failures and Service Life

Based on the JIS C 5003 Standard, the failure rate for NPCAP[™] capacitors (with a 60% reliability standard) is as follows:

0.5%/1,000 hours (applied rated voltage

at category temperature)

a) Failure Modes

The main cause of failure is thermal stress caused by the solder reflow process or thermal use environment, along with electrical and mechanical stresses. The most common capacitor failure mode is the short circuit mode, where the following phenomenon may occur after shorting:

(1) If the pass-through current when the product is shorted is 1A or less, then the product becomes heated, but no effects are visible, even when the current is continuously carried. However, larger currents may cause substantial internal heating that causes the rubber seal to separate from the case, causing the release of gas.

(2) Some flammable materials are used in the capacitor. If an extremely large electric current flows through the capacitor after shorting, the shorted part may spark, and in a worstcase scenario, may ignite. Ensure safety by fully considering the design issues described below when using this capacitor in equipment where safety is a priority.

- Increase safety by using in conjunction with a protective circuit or protective equipment.
- Install measures such as redundant circuits so that the failure of a part of the equipment will not cause unstable operation.
- b) Service Life

NPCAP[™] uses rubber as the sealing material, so the service life depends on the thermal integrity of this rubber. Consequently, it is recommended to use the capacitor at a lower temperature than the maximum temperature for the capacitor category.

10 Capacitor Insulation

Ensure electrical insulation between the capacitor case, negative electrode, positive electrode and circuit pattern.

11 Capacitor Usage Environment

Do not use/expose capacitors to the following conditions.

- a) Oil, water, salty water, take care to avoid storage in damp locations.
- b) Direct sunlight
- c) Toxic gases such as hydrogen, sulfide, sulfurous acids, nitrous acids, chlorine and chlorine compounds, bromine and bromine compounds, ammonia, etc.
- d) Ozone, ultraviolet rays and radiation.
- e) Severe vibration or mechanical shock conditions beyond the limits advised in the product specification section of the catalog.

12 Capacitor mounting

- a) For the surface mount capacitor, design the copper pads on the PC board in accordance with the catalog or the product specification
- b) For radial capacitors, design the terminal holes on the PC board to fit the terminal pitch of the capacitor.

Installing Capacitors

1 Installing

- a) Do not reuse capacitors already assembled in equipment that have been exposed to power.
- b) The capacitor may have self charge. If this happens, discharge the capacitor through a resistor of approximately $1k\Omega$ before use.
- c) If capacitors are stored at a temperature of 35° C or more and more than 75%RH, the leakage current may increase. This may also occur if the capacitors are stored for a longer period than the period which is specified in the catalog or the product specification. In this case, they can be reformed by the voltage treatment through a resistor of approximately 1k Ω .
- d) Verify the rated capacitance and voltage of the capacitors when installing.
 a) Varify the polarity of the capacitors
- e) Verify the polarity of the capacitors.
- f) Do not use the capacitors if they have been dropped on the floor.
- g) Do not deform the case of the capacitors.
- h) Verify that the lead spacing of the capacitor fits the hole spacing in the PC board before installing the capacitors.
- i) Do not apply any mechanical force in excess of the limits prescribed in the catalog or the product specification of the capacitors. Avoid subjecting the capacitor to strong forces, as this may break the electrode terminals, bend or deform the capacitor, or damage the packaging, and may also cause short/open circuits, increased leakage current, or damage the appearance. Also, note the capacitors may be damaged by mechanical shocks caused by the vacuum/insertion head, component checker or centering operation of an automatic mounting or insertion machine.

2 Heat Resistance during Soldering

Ensure that the soldering conditions meet the specifications recommended by Nippon Chemi-Con. Note that the leakage current may increase due to thermal stresses that occur during soldering, etc. Note that increased leakage currents gradually decrease when voltage is applied.

a) Verify the following before using a soldering iron:

- That the soldering conditions (temperature and time) are within the ranges specified in the catalog or product specifications.
- That the tip of the soldering iron does not come into contact with the capacitor itself.
- b) Verify the following when flow soldering:
 - Do not dip the body of a capacitor into the solder bath only dip the terminals in. The soldering must be done on the reverse side of PC board.
 - Soldering conditions (preheat, solder temperature and dipping time) should be within the limits prescribed in the catalog or the product specifications.
 - Do not apply flux to any part of capacitors other than their terminals.
 - Make sure the capacitors do not come into contact with any other components while soldering.
- c) Verify the following when reflow soldering:

- Soldering conditions (preheat, solder temperature and soldering time) should be within the limits prescribed in the catalogs or the product specification.
- The heat level should be appropriate. (Note that the thermal stress on the capacitor varies depending on the type and position of the heater in the reflow oven, and the color and material of the capacitor.)
- Vapor phase soldering (VPS) is not used.
- Except for the surface mount type, reflow soldering must not be used for the capacitors.
- d) Do not reuse a capacitor that has already been soldered to PC board and then removed. When using a new capacitor in the same location, remove the flux, etc. first, and then use a soldering iron to solder on the new capacitor in accordance with the specifications.
- e) Confirm before running into soldering that the capacitors are for reflow soldering.

3 Handling After Soldering

Do not apply any mechanical stress to the capacitor after soldering onto the PC board.

- a) Do not lean or twist the body of the capacitor after soldering the capacitors onto the PC board.
- b) Do not use the capacitors for lifting or carrying the assembly board.
- c) Do not hit or poke the capacitor after soldering to PC board. When stacking the assembly board, be careful that other components do not touch the aluminum electrolytic capacitors.
- d) Do not drop the assembled board.

4 Cleaning PC boards

- a) Do not wash capacitors by using the following cleaning agents. Solvent resistant capacitors are only suitable for washing using the cleaning conditions prescribed in the catalog or the product specification. In particular, ultrasonic cleaning will accelerate damage to capacitors.
 - Halogenated solvents; cause capacitors to fail due to corrosion.
 - Alkali system solvents; corrode (dissolve) an aluminum case.
 - Petroleum system solvents; cause the rubber seal material to deteriorate.
 - Xylene; causes the rubber seal material to deteriorate.
 - Acetone; erases the markings.
- b) Verify the following points when washing capacitors.
 - Monitor conductivity, pH, specific gravity and the water content of cleaning agents. Contamination adversely affects these characteristics.
 - Be sure not to expose the capacitors under solvent rich conditions or keep capacitors inside a closed container. In addition, please dry the solvent sufficiently on the PC board and the capacitor with an air knife (temperature should be less than the maximum rated category temperature of the capacitor) for 10 minutes. Aluminum electrolytic capacitors can be characteristically and catastrophically damaged by halogen ions, particularly by chlorine ions, though the degree of the damage mainly depends upon the characteristics of the electrolyte and rubber seal material. When halogen ions come into contact with the capacitors, the foil corrodes when a voltage is applied. This corrosion causes an extremely high leakage current which results venting and an open circuit.

If the new types of cleaning agents mentioned below are used, the following are recommended as cleaning conditions for some of new cleaning agents.

-Higher alcohol cleaning agents

Pine Alpha ST-100S (Arakawa Chemical)

Clean Through 750 H, 750K, 750L, and 710M (Kao) Technocare FRW-14 through 17 (Toshiba) Cleaning Conditions:

Using these cleaning agents, capacitors are capable of withstanding immersion or ultrasonic cleaning for 10 minutes at a maximum liquid temperature of 60°C. Find optimum condition for washing, rinsing, and drying. Be sure not to rub the marking off the capacitor which can be caused by contact with other components or the PC board. Note that shower cleaning adversely affects the markings on the sleeve.

-Non-Halogenated Solvent Cleaning

AK225AES (Asahi Glass)

Cleaning Conditions:

Ultrasonic or vapor cleaning for 5 minutes. However, from an environmental point of view, these types of solvent will be banned in near future. We would recommend not using them if at all possible.

-Isopropyl Alcohol (IPA)

IPA (Isopropyl Alcohol) is one of the most acceptable cleaning agents; it is necessary to maintain a flux content in the cleaning liquid at a maximum limit of 2 Wt.%.

5 Precautions for using adhesives and coating materials

- a) Do not use any adhesive and coating materials containing halogenated solvent.
- b) Verify the following before using adhesive and coating material.
 - Remove flux and dust left over between the rubber seal and the PC board before applying adhesive or coating materials to the capacitor.
 - Dry and remove any residual cleaning agents before applying adhesive and coating materials to the capacitors. Do not cover over the whole surface of the rubber seal with the adhesive or coating materials.
 - For permissible heat conditions for curing adhesives or coating materials, follow the instructions in the catalog or the product specification for the capacitors.
 - Covering over the whole surface of the capacitor rubber seal with resin may result in a hazardous condition because the inside pressure cannot be completely released. Also, a large amount of halogen ions in resins will cause the capacitors to fail because the halogen ions penetrate into the rubber seal and the inside of the capacitor.
 - Consider that some solvents in the adhesives and coating materials may make the capacitor surface matt or result in whitening.

6 Fumigation

In many cases when exporting or importing electronic devices, such as capacitors, wooden packaging is used. In order to control insects it may become necessary to fumigate the shipment. Precautions during "Fumigation" using halogenated chemical such as Methyl Bromide must be taken. Halogen gas can penetrate packaging materials such as cardboard boxes and vinyl bags. Penetration of the halogenated gas can cause corrosion of Electrolytic capacitors. Nippon Chemi-Con gives consideration to the packaging materials not to require the Fumigation. Verify whether the assembled PC board, products and capacitors themselves are subjected to Fumigation during their transportation or not.

The Operation of Devices

- a) Do not touch the capacitor terminals directly.
- b) Do not short-circuit the terminal of a capacitor by letting it come into contact with any conductive object. Also, do not spill electric-conductive liquid such as acid or alkaline solution over the capacitor.

- c) Do not use capacitors in circumstances where they would be subject to exposure to the following materials
 - Oil, water, salty water or damp location.
 - Direct sunlight.
 - Toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or its compounds, and ammonium.
 - Ozone, ultraviolet rays or radiation.
 - Severe vibration or mechanical shock conditions beyond the limits prescribed in the catalog or product specification.

Maintenance Inspection

- a) Make periodic inspections of capacitors that have been used in industrial applications. Before inspection, turn off the power supply and carefully discharge the electricity in the capacitors. Verify the polarity when measuring the capacitors with a volt-ohm meter. Do not apply any mechanical stress to the terminals of the capacitors.
- b) The following items should be checked during the periodic inspections.
 - Significant damage in appearance
 - Electrical characteristics: leakage current, capacitance, tanδ and other characteristics prescribed in the catalog or product specification.
 - We recommend replacing the capacitors if the parts are out of specification.

Contingencies

- a) If gas has vented from the capacitor during use, there is a short circuit and burning, or the capacitor discharges an odor or smoke, turn off the main power supply to the equipment or unplug the power cord.
- b) If there is a problem with the capacitor or a fire breaks out, the capacitor may produce a burning gas or reactive gas from the outer resin, etc. If this happens, keep your hands and face away from the gas. If vented gas is inhaled or comes into contact with your eyes, flush your eyes immediately with water and/or gargle. If vented gas comes into contact with the skin, wash the affected area thoroughly with soap and water.

Storage

We recommend the following conditions for storage.

a) Store capacitors in a cool, dry place. Store at a temperature between 5 and 35°C, with a humidity of 75% or less.

(table-1)

<u> </u>		
	Befor the bag is opened	After the bag is opened
SMD	Within 3 years after manufacturing	Within 6 months after the bag is opend
Radial	Within 3 years after manufacturing	_

SMD products are sealed in a special laminated aluminum bag. Use all capacitors once the bag is opened. Return unused capacitors to the bag, and seal it with a zipper. Please refer to (Table -1) for storage conditions. Be sure to follow our recommendations for reflow soldering.

- b) Store the capacitors in a location free from direct contact with water, salt water, and oil.
- c) Store in a location where the capacitor is not exposed to toxic gas, such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or chlorine compounds, bromine or other halogen gases, methyl bromide or other halogen compounds, ammonia, or similar.
- d) Store in a location where the capacitor is not exposed to ozone, ultraviolet radiation, or other radiation.
- e) It is recommended to store capacitors in their original packaging wherever possible.
- f) The JEDEC J-STD-020 (Rev. C) standard does not apply.

Disposal

Please consult with a local industrial waste disposal specialist when disposing of aluminum electrolytic capacitors.

Catalogs

Specifications in the catalogs may be subject to change without notice. For more details of precautions and guidelines for aluminum electrolytic capacitors, please refer to Engineering Bulletin No. 634A.

For conductive polymer aluminum electrolytic solid capacitors, please refer to PRECAUTIONS AND GUIDELINES (Conductive Polymer)

Designing Device Circuits

1 Select the capacitors to suit installation and operating conditions, and use the capacitors to meet the performance limits prescribed in this catalog or the product specifications.

2 Polarity

Aluminum Electrolytic Capacitors are polarized.

Apply neither reverse voltage nor AC voltage to polarized capacitors. Using reversed polarity causes a short circuit or venting. Before use, refer to the catalog, product specifications or capacitor body to identify the polarity marking. (The shape of rubber seal does not represent the directional rule for polarity.) Use a bi-polar type of non-solid aluminum electrolytic capacitor for a circuit where the polarity is occasionally reversed.

However, note that even a bi-polar aluminum electrolytic capacitor must not be used for AC voltage applications.

3 Operating voltage

Do not apply a DC voltage which exceeds the full rated voltage. The peak voltage of a superimposed AC voltage (ripple voltage) on the DC voltage must not exceed the full rated voltage. A surge voltage value, which exceeds the full rated voltage, is prescribed in the catalogs, but it is a restricted condition, for especially short periods of time.

4 Ripple current

The rated ripple current has been specified at a certain ripple frequency. The rated ripple current at several frequencies must be calculated by multiplying the rated ripple current at the original frequency using the frequency multipliers for each product series. For more details, refer to the paragraph on Aluminum Electrolytic Capacitor Life.

5 Category temperature

The use of a capacitor outside the maximum rated category temperature will considerably shorten the life or cause the capacitor to vent.

The relation between the lifetime of aluminum electrolytic capacitors and ambient temperature follows Arrhenius' rule that the lifetime is approximately halved with each 10°C rise in ambient temperature.

6 Life expectancy

Select the capacitors to meet the service life of a device.

7 Charge and discharge

Do not use capacitors in circuits where heavy charge and discharge cycles are frequently repeated. Frequent and sharp heavy discharging cycles will result in decreasing capacitance and damage to the capacitors due to generated heat. Specified capacitors can be designed to meet the requirements of charging-discharging cycles, frequency, operating temperature, etc.

8 Failure mode of capacitors

Non-solid aluminum electrolytic capacitors, in general, have a lifetime which ends in an open circuit, the period is dependent upon temperature. Consequently the lifetime of capacitors can be extended by reducing the ambient temperature and/or ripple current.

9 Insulating

- a) Electrically isolate the following parts of a capacitor from the negative terminal, the positive terminal and the circuit traces.
 - The outer can case of a non-solid aluminum capacitor.
 - The dummy terminal of a non-solid aluminum capacitor, which is designed for mounting stability.

b) The outer sleeve of a capacitor is not assured as an insulator (Except for screw type). For applications that require an insulated outer sleeve, a custom-design capacitor is recommended.

10 Condition

Do not use/expose capacitors to the following conditions.

- a) Oil, water, salty water storage in damp locations.
- b) Direct sunlight
- c) Toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or its compounds, and ammonium
- d) Ozone, ultraviolet rays or radiation
- e) Severe vibration or mechanical shock conditions beyond the limits prescribed in the catalogs or the product specification.

11 Mounting

 a) The paper separators and the electrolytic-conductive electrolytes in a non-solid aluminum electrolytic capacitor are flammable.

Leaking electrolyte on a printed circuit board can gradually erode the copper traces, possibly causing smoke or burning by short-circuiting the copper traces.

- Verify the following points when designing a PC board.
- Provide the appropriate hole spacing on the PC board to match the terminal spacing of the capacitor.
- Make the following open space over the vent so that the vent can operate correctly.

Case diameter	<u>Clearance</u>
φ6.3 to φ16mm	2mm minimum
φ18 to φ35mm	3mm minimum
φ40mm and up	5mm minimum

- Do not place any wires or copper traces over the vent of the capacitor.
- Installing a capacitor with the vent facing the PC board needs an appropriate ventilation hole in PC board.
- Do not pass any copper traces beneath the seal side of a capacitor. The trace must pass 1 or 2mm to the side of the capacitor.
- Avoid placing any heat-generating objects adjacent to a capacitor or even on the reverse side of the PC board.
- Do not pass any via holes underneath a capacitor.
- In designing double-sided PC boards, do not locate any copper trace under the seal side of a capacitor.
- b) Do not mount the terminal side of a screw mount capacitor downwards. If a screw terminal capacitor is mounted on its side, make sure the positive terminal is higher than the negative terminal.

Do not tighten the screws of the terminals and the mounting clamps over the specified torque prescribed in the catalog or the production specification.

c) For a surface mount capacitor, design the copper pads of the PC board in accordance with the catalog or the product specifications.

12 Others

- a) The electrical characteristics of capacitors vary in respect to temperature, frequency and service life. Design the device circuits by taking these changes into account.
- b) Capacitors mounted in parallel need the current to flow equally through the individual capacitors.
- c) Capacitors mounted in series require resistors in parallel with the individual capacitors to balance the voltage.
- d) Using capacitor for applications which always consider safety. Consult with our factory before use in applications which can affect human life.(space equipment, aerial equipment, nuclear equipment, medical equipment, vehicle control equipment, etc) Please note that the product, which is

designed only for specific usage can not be used in other usages.(ex. Photo flash type, etc.)

Installing Capacitors

1 Installing

- a) Used capacitors are not reusable, except in the case that the capacitors are detached from a device for periodic inspection to measure their electrical characteristics.
- b) If the capacitors have self charged, discharge in the capacitors through a resistor of approximately $1k\Omega$ before use.
- c) If capacitors are stored at a temperature of 35°C or more and more than 75%RH, the leakage current may increase. In this case, they can be reformed by applying the rated voltage through a resistor of approximately $1k\Omega$.
- d) Verify the rated capacitance and voltages of the capacitors when installing.
- e) Verify the polarity of the capacitors.
- f) Do not use the capacitors if they have been dropped on the floor.
- g) Do not deform the cases of capacitors.
- h) Verify that the lead spacing of the capacitor fits the hole spacing in the PC board before installing the capacitors. Some standard pre-formed leads are available.
- For pin terminals or snap-in terminals, insert the terminals into PC board and press the capacitor downward until the bottom of the capacitor body reaches PC board surface.
- j) Do not apply any mechanical force in excess of the limits prescribed in the catalogs or the product specifications of the capacitors.

Also, note the capacitors may be damaged by mechanical shocks caused by the vacuum/insertion head, component checker or centering operation of an automatic mounting or insertion machine.

2 Soldering and Solderability

- a) When soldering with a soldering iron
 - Soldering conditions (temperature and time) should be within the limits prescribed in the catalogs or the product specifications.
 - If the terminal spacing of a capacitor does not fit the terminal hole spacing of the PC board, reform the terminals in a manner to minimize a mechanical stress into the body of the capacitor.
 - Remove the capacitors from the PC board, after the solder is completely melted, reworking by using a soldering iron minimizes the mechanical stress to the capacitors.
 - Do not touch the capacitor body with the hot tip of the soldering iron.
- b) Flow soldering
 - Do not dip the body of a capacitor into the solder bath only dip the terminals in. The soldering must be done on the reverse side of PC board.
 - Soldering conditions (preheat, solder temperature and dipping time) should be within the limits prescribed in the catalogs or the product specifications.
 - Do not apply flux to any part of capacitors other than their terminals.
 - Make sure the capacitors do not come into contact with any other components while soldering.
- c) Reflow soldering
 - Soldering conditions (preheat, solder temperature and dipping time) should be within the limits prescribed in the catalogs or the product specifications.
 - When setting the temperature infrared heaters, consider that the infrared absorption causes material to be discolored and change in appearance.
 - Do not solder capacitors more than once using reflow. If you need to twice, be sure to consult with us.

- Make sure capacitors do not come into contact with copper traces.
- d) Do not re-use surface mount capacitors which have already been soldered.
 - In addition, when installing a new capacitor onto the assembly board to rework, remove old residual flux from the surface of the PC board, and then use a soldering iron within the prescribed conditions.
- e) Confirm before running into soldering that the capacitors are for reflow soldering.

3 Handling after soldering

Do not apply any mechanical stress to the capacitor after soldering onto the PC board.

- a) Do not lean or twist the body of the capacitor after soldering the capacitors onto the PC board.
- b) Do not use the capacitors for lifting or carrying the assembly board.
- c) Do not hit or poke the capacitor after soldering to PC board. When stacking the assembly board, be careful that other components do not touch the aluminum electrolytic capacitors.
- d) Do not drop the assembly board.

4 Cleaning PC boards

- a) Do not wash capacitors by using the following cleaning agents.
 Halogenated solvents; cause capacitors to fail due to corrosion.
 - Alkali system solvents; corrode (dissolve) an aluminum case.
 - Petroleum system solvents; cause the rubber seal material to deteriorate.
 - · Xylene; causes the rubber seal material to deteriorate.
 - Acetone; erases the marking.

Solvent resistant capacitors are only suitable for washing using the cleaning conditions prescribed in the catalogs or the product specifications. In particular, ultrasonic cleaning will accelerate damaging capacitors.

- b) Verify the following points when washing capacitors.
 - Monitor conductivity, pH, specific gravity, and the water content of cleaning agents. Contamination adversely affects these characteristics.
 - Be sure not to expose the capacitors under solvent rich conditions or keep capacitors inside a closed container. In addition, please dry the solvent sufficiently on the PC board and the capacitor with an air knife (temperature should be less than the maximum rated category temperature of the capacitor) over 10 minutes.

Aluminum electrolytic capacitors can be characteristically and catastrophically damaged by halogen ions, particularly by chlorine ions, though the degree of the damage mainly depends upon the characteristics of the electrolyte and rubber seal material. When halogen ions come into contact with the capacitors, the foil corrodes when voltages applied. This corrsion causes ; extremely high leakage current, which causes in line with, venting, and an open circuit.

Global environmental warnings (Greenhouse effects and other environmental destruction by depletion of the ozone layer), new types of cleaning agents have been developed and commercialized as substitutes for CFC-113,1,1,2-trichloroethlene and 1,1,1-trichloroethylene. The following are recommended as cleaning conditions for some of new cleaning agents.

-Higher alcohol system cleaning agents

Recommended cleaning agents:

Pine Alpha ST-100S (Arakawa Chemical) Clean Through 750H, 750K, 750L, and 710M (Kao) Technocare FRW-14 through 17 (Toshiba) Cleaning conditions:

PRECAUTIONS AND GUIDELINES

Using these cleaning agents capacitors are capable of withstanding immersion or ultrasonic cleaning for 10 minutes at a maximum liquid temperature of 60° C. Find optimum condition for washing, rinsing, and drying. Be sure not to rub the marking off the capacitor by contacting any other components or the PC board. Note that shower cleaning adversely affects the markings on the sleeve.

-Non-Halogenated Solvent Cleaning

AK225AES (Asahi Glass)

Cleaning conditions:

Solvent resistant capacitors are capable of withstanding any one of immersion, ultrasonic or vapor cleaning for 5 minutes; ex-ception is 2 minutes max. for KRE, and KRE-BP series capacitors and 3 minutes for SRM series capacitors. However, from a view of the global environmental problems, these types of solvent will be banned in near future. We would recommended not using them as much as possible.

Isopropyl alcohol cleaning agents

IPA (Isopropyl Alcohol) is one of the most acceptable cleaning agents; it is necessary to maintain a flux content in the cleaning liquid at a maximum limit of 2 Wt.%.

5 Precautions for using adhesives and coating materials

- a) Do not use any adhesive and coating materials containing halogenated solvent.
- b) Verify the following before using adhesive and coating material.
 - Remove flux and dust leftover between the rubber seal and the PC board before applying adhesive or coating materials to the capacitor.
 - Dry and remove any residual cleaning agents before applying adhesive and coating materials to the capacitors. Do not cover over the whole surface of the rubber seal with the adhesive or coating materials.
 - For permissible heat conditions for curing adhesives or coating materials, follow the instructions in the catalogs or the product specifications of the capacitors.
 - Covering over the whole surface of the capacitor rubber seal with resin may result in a hazardous condition because the inside pressure cannot release completely. Also, a large amount of halogen ions in resins will cause the capacitors to fail because the halogen ions penetrate into the rubber seal and the inside of the capacitor.
- c) Some of coating material cannot be curred over the capacitor. Please note that loose luster and whitening on the surface of the outer sleeve might be caused according to the kind of solvents used for mounting adhesives and coating agents.

6 Fumigation

In many cases when exporting or importing electronic devices, such as capacitors, wooden packaging is used. In order to control insects, many times, it becomes necessary to fumigate the shipments. Precautions during "Fumigation" using halogenated chemical such as Methyl Bromide must be taken. Halogen gas can penetrate packaging materials used, such as, cardboard boxes and vinyl bags. Penetration of the halogenide gas can cause corrosion of Electrolytic capacitors.

The Operation of Devices

- a) Do not touch a capacitor directly with bare hands.
- b) Do not short-circuit the terminal of a capacitor by letting it come into contact with any conductive object.
 - Also, do not spill electric-conductive liquid such as acid or alkaline solution over the capacitor.
- c) Do not use capacitors in circumstance where they would be subject to exposure to the following materials exist or expose.
 - Oil, water, salty water or damp location.
 - Direct sunlight.

- Toxic gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or its compounds, and ammonium.
- Ozone, ultraviolet rays or radiation.
- Severe vibration or mechanical shock conditions beyond the limits prescribed in the catalogs or product specification.

Maintenance Inspection

- a) Make periodic inspections of capacitors that have been used in industrial applications. Before inspection, turn off the power supply and carefully discharge the electricity in the capacitors. Verify the polarity when measuring the capacitors with a volt-ohm meter. Also, do not apply any mechanical stress to the terminals of the capacitors.
- b) The following items should be checked during the periodic inspections.
 - Significant damage in appearance : venting and electrolyte leakage.
 - Electrical characteristics: leakage current, capacitance, tanδ and other characteristics prescribed in the catalogs or product specifications.

We recommend replacing the capacitors if the parts are out of specification.

In Case of Venting

- a) If a non-solid aluminum electrolytic capacitor expells gas when venting, it will discharge odors or smoke, or burn in the case of a short-circuit failure. Immediately turn off or unplug the main power supply of the device.
- b) When venting, a non-solid aluminum electrolytic capacitor blows out gas with a temperature of over 100°C. (A solid aluminum electrolytic capacitor discharges decomposition gas or burning gas while the outer resin case is burning.) Never expose the face close to a venting capacitor. If your eyes should inadvertently become exposed to the spouting gas or you inhale it, immediately flush the open eyes with large amounts of water and gargle with water respectively. If electrolyte is on the skin, wash the electrolyte away from the skin with soap and plenty of water. Do not lick the electrolyte of non-solid aluminum electrolytic capacitors.

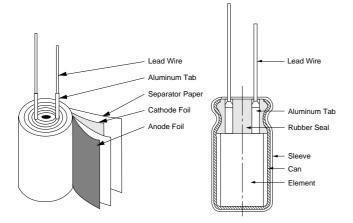
Storage

We recommend the following conditions for storage.

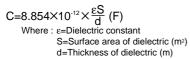
- a) Do not store capacitors at a high temperature or in high humidity. Store the capacitors indoors at a temperature of 5 to 35℃ and a humidity of less than 75%RH.
- b) Store the capacitors in places free from water, oil or salt water.c) Store the capacitors in places free from toxic gasses (hy-
- drogen sulfide, sulfurous acid, chlorine, ammonium, etc.)d) Store the capacitors in places free from ozone, ultraviolet
- d) Store the capacitors in places free from ozone, ultraviolet rays or radiation.
- e) Keep capacitors in the original package.
- f) It is not applied to a regulation of JEDEC J-STD-020(Rev.C). But MSL (Moisture Sensitivity Level) is suitable for Level 1. A time limit for keeping goods under packed situation is within 3 years after manufacturing.

Disposal

Please consult with a local industrial waste disposal specialist when disposing of aluminum electrolytic capacitors.


Catalogs

Specifications in catalogs may be subject to change without notice. For more details of precautions and guidelines for aluminum electrolytic capacitors, please refer to Engineering Bulletin No. 634A.



Structure of Aluminum Electrolytic Capacitors

The aluminum electrolytic capacitor contains an internal element of an anode foil, a cathode foil and paper separator rolled together, impregnated with an electrolyte, then attached to external terminals connecting the tabs with the anode or the cathode foils, and sealed in a can case.

Among various types of capacitors, an aluminum electrolytic capacitor offers large CV to volume and features low cost. The capacitance (C) of aluminum electrolytic capacitors, as well as other capacitors, is expressed by the following equation:

This equation shows that the capacitance increases in proportion as the dielectric constant becomes high, its surface area becomes large and the thickness of dielectric becomes thin. In aluminum electrolytic capacitors the dielectric constant of an aluminum oxide (Al₂O₃) layer is 8 to 10, which is not as high as compared with the other types of capacitors. However, the dielectric layer of the aluminum oxide is extremely thin (about 15Å per volt) and the surface area is very large. An electrochemical formed electrode foil makes the dielectric on the etched surface of aluminum electrode foil. Electrochemical etching creates 20 to 100 times more surface area as plain foil. Therefore, an aluminum electrolytic capacitor can offer a large capacitance compared with other types.

Primary of Composition Material

Anode aluminum foil:

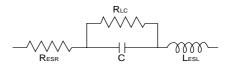
First, the etching process is carried out electromechanically with a chloride solution which dissolves metal and increases the surface area of the foil; forming a dense network like innumerable microscopic channels. Secondly, the formation process is carried out with a solution such as ammonium borate which forms the aluminum oxide layer (Al₂O₃) as a dielectric at a thickness of about 1.1 to 1.5nm / volt. The process needs to charge more the rated voltage into the foil.

Cathode aluminum foil:

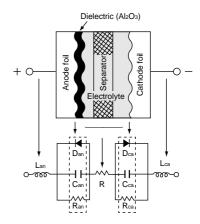
As in the first manufacturing process of the positive foil, the cathode foil requires etching process. Generally, it does not require the formation process; therefore, the natural oxide layer of Al₂O₃, which gives a characteristic dielectric voltage of 1.0 volts, is formed.

Electrolyte and separator:

In a non-solid aluminum electrolytic capacitor, the electrolyte, an electrically conductive liquid, functions as a true cathode by contacting the dielectric oxide layer. Accordingly, the "cathode foil" serves as an electrical connection between the electrolyte and terminal.


The separator functions to retain the electrolyte and prevent the anode and cathode foils from short-circuiting.

Can case and sealing materials:


The foils and separator are wound into a cylinder to make an internal element, which is impregnated with the electrolyte, inserted into an aluminum can case and sealed. During the service life of a capacitor, electrolyte slowly and naturally vaporizes by electrochemical reaction on the boundary of the aluminum foils. The gas will increase the pressure inside the case and finally cause the pressure relief vent to open or the sealing materials to bulge. The sealing material functions not only to prevent electrolyte from drying out but also to allow the gas to escape out of the can case in a controlled manner.

The Equivalent Circuit

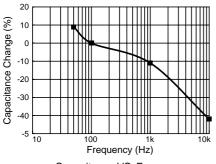
As the equivalent circuit of an aluminum electrolytic capacitor is shown below, it forms a capacitance, a series resistance, an inductance, and a parallel resistance.

RESR=Equivalent series resistance (ESR) Ric =Resistance due to leakage current C =Capacitance LESL =Equivalent series inductance

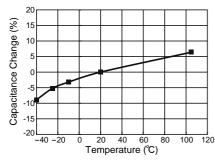
From a composition material point wise, the equivalent circuit is subdivided as follows.

- Can, Cca=Capacitance due to anode and cathodes foils
- R =Resistance of electrolyte and separator
- Ran, Rca=Internal resistance of oxide layer on anode and cathode foils
- $D_{an,} D_{ca}{=}Diode$ effects due to oxide layer on anode and cathode foils $L_{an,} L_{ca}$ =Inductance due to anode and cathode terminals

Basic Electrical Characteristics


Capacitance:

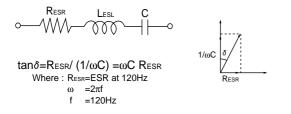
The capacitance of capacitor is expressed as AC capacitance


PRECAUTIONS AND GUIDELINES

by measuring impedance and separating factors. Also, the AC capacitance depends upon frequency, voltage and other measuring methods. In fact, JIS C 5101 prescribes that the series capacitive factor of an equivalent series(\circ —||—/\/\/- \circ) circuit shall be the capacitance measured at a frequency of 120Hz and applying a maximum AC voltage of 0.5V rms with a DC bias voltage of 1.5 or 2.0V to aluminum electrolytic capacitor becomes smaller with increasing frequency. See the typical behavior shown below.

Capacitance VS. Frequency

The capacitance value is highly dependent upon temperature and frequency. As the temperature decreases, the capacitance becomes smaller. See the typical behavior shown below.



Temperature Characteristics of Capacitance

On the other hand, DC capacitance, which can be measured by applying a DC voltage, shows a slightly larger value than the AC capacitance at a normal temperature and has the flatter characteristic over the temperature range.

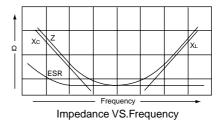
$tan\delta$ (tangent of loss angle or dissipation factor):

The tan δ is expressed as the ratio of the resistive component (RESR) to the capacitive reactance (1/ ω C) in the equivalent series circuit. Its measuring conditions are the same as the capacitance.

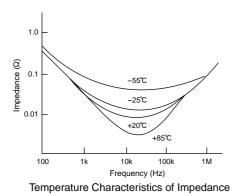
The tan δ shows higher values as the measured frequency increases and the measured temperature decreases.

Equivalent series resistance (ESR):

The ESR is the series resistance consisting of the aluminum oxide layer, electrolyte/separator combination, and other resistance related factors, foil length, foil surface area and others. The ESR value depends upon the temperature. Decreasing the temperature makes the resistivity of the electrolyte increase and leads to increasing ESR.


As the measuring frequency increases, the ESR decreases and reaches an almost constant value that mainly dominates the frequency-independent resistance relating electrolyte/ separator combination.

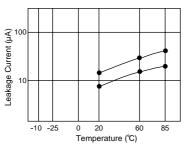
Impedance (Z):


The impedance is the resistance of the alternating current at a specific frequency. It is related to capacitance (C) and inductance (L) in terms of capacitive and inductive reactance, and also related to the ESR. It is expressed as follows:

$$Z=\sqrt{ESR^{2}+(X_{L}-X_{C})^{2}}$$
Where : X_C=1/ ω C=1/2 π fC
X_L= ω L=2 π fL

As shown below, the capacitive reactance (Xc) dominates at the range of low frequencies, and the impedance decreases with increasing frequency until it reaches the ESR in the middle frequency range. At the range of the higher frequencies the inductive reactance (XL) comes to dominate, so that the impedance increases when increasing the measuring frequency.

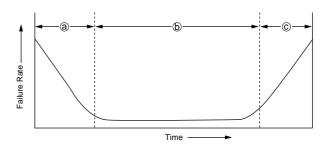
As shown at the next page, the impedance value varies with temperature because the resistance of the electrolyte is strongly affected by temperature.


Leakage current:

The dielectric of a capacitor has a very high resistance that does not allow DC current to flow. However, due to the characteristics of the aluminum oxide layer that functions as a dielectric in contact with electrolyte, a small amount of current, called leakage current, will flow to reform and repair the oxide layer when a voltage is being applied. As shown below, a high leakage current flows to charge voltage to the capacitor for the first seconds, and then the leakage current will decrease and reach an almost steady-state value with time.

Leakage Current VS. Time

Measuring temperature and voltage influences the leakage current. The leakage current shows higher values as the temperature and voltage increase.


Typical Temperature Characteristics

In general, the leakage current is measured at 20°C by applying the rated voltage to capacitor through a resistor of 1000Ω in series. The leakage current is the value several minutes later after the capacitor has reached the rated voltage. The catalog prescribes the measuring temperature and time.

Reliability

The bathtub curve:

Aluminum electrolytic capacitors feature failure rates shown by the following bathtub curve.

a) Infant failure period

This initial period accounts for the failures caused by deficiencies in design, structure, the manufacturing process or severe misapplications. In other words the initial failures occur as soon as the components are installed in a circuit. In the case of aluminum electrolytic capacitors, these failures do not occur at customers' field because aging process reforms an incomplete oxide layer, or eliminate the defective parts at the aging process and the sorting process.

Misapplication of the capacitor such as inappropriate ambient conditions, over-voltage, reverse voltage, or excessive ripple current should be avoided for proper use of the capacitor in a circuit.

b) Useful life period

This random failure period exhibits an extremely low failure rate. These failures are not related to operating time but to application conditions. During this period, non-solid aluminum electrolytic capacitors lose a small amount of electrolyte. The electrolyte loss shows as a slow decrease in capacitance and a slow increase in tan δ and ESR. Non-solid aluminum electrolytic capacitors still exhibit lower catastrophic failures than semiconductors and solid tantalum capacitors.

c) Wear-out failure period

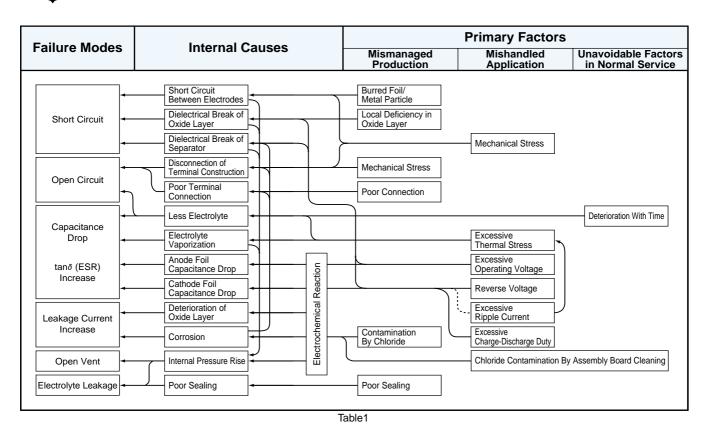
This period reflects a deterioration in the component properties of the capacitor; the failure rate increases with time. Non-solid aluminum electrolytic capacitors end their useful life during this period.

Failure types:

The two types of failures are classified as catastrophic failures and wear-out failures as follows.

1) Catastrophic failures

This is a failure mode that destroys the function of the capacitor like a short circuit or open circuit failure.


2) Wear-out failures

This is a failure mode where gradually deteriorates; the electrical parameters of the capacitor. The criteria of judging the failures, vary with application and design factors. Capacitance decreases and tan δ increases are caused by the loss of electrolyte in the wear-out failure period. This is primary due to loss of electrolyte by diffusion (as vapor) through the sealing material. Gas molecules can diffuse out through the material of the end seal. High temperature increase the electrolyte vapor pressure within the capacitor and the diffusion rate is therefore increased. This increases internal pressure may cause the seal to bulge caused by elevated temperatures. This bulging may accelerate diffusion and mechanically degrade the seal. Factors that can increase the capacitor temperature, such as ambient temperature and ripple current, can accelerate the wear-out phase of a capacitor.

Failure modes:

Aluminum electrolytic capacitors show various failure modes in different applications. (See Table 1.)

Life of Aluminum Electrolytic Capacitors

The life of aluminum electrolytic capacitors is largely dependent on environmental and electrical factors. Environmental factors include temperature, humidity, atmospheric pressure and vibration. Electrical factors include operating voltage, ripple current and charge-discharge duty cycles. The factor of temperature (ambient temperature and internal heating due to ripple current) is the most critical to the life of aluminum electrolytic capacitors.

General formula to estimate lifetime:

The lifetime of non-solid aluminum electrolytic capacitors is generally expressed by using three elements representing the effects of ambient temperature, applying voltage and ripple current, which is shown by the following equation:

```
Lx=L·KTemp·KVoltage·KRipple
```

- $\begin{array}{ll} \mbox{Where: } L_{x} & = \mbox{Lifetime of capacitor to be estimated} \\ L_{o} & = \mbox{Base lifetime of capacitor} \\ K_{\mbox{Temp}} & = \mbox{Ambient temperature accelation term} \\ K_{\mbox{Voltage}} = \mbox{Voltage accelation term} \\ \end{array}$
 - KRipple =Ripple current accelation term

K_{Temp} (Effects of ambient temperature on life):

Because an aluminum electrolytic capacitor is essentially an electrochemical component, increased temperatures accelerate the chemical reaction producing gas within the capacitor which is diffused through the end seal, and consequently accelerates a gradual decrease in capacitance and a gradual increase in tan δ and ESR. The following equation has been experimentally found to express the relationship between the temperature acceleration factor and the deterioration of the capacitor.

```
Lx=Lo·KTemp=Lo·B (To-Tx) /10
```

KTemp=B^{(To-Tx)/10}

```
Where : L_x =Lifetime (hour) of capacitor to be estimated
```

- L₀ =Base lifetime (hour) of capacitor T₀ =Maximum rated category temperature (°C) of capacitor shown in catalog
- Tx = Actual ambient temperature ($^{\circ}$ C) of capacitor
- B =Temperature accelation factor (\approx 2)

This equation is similar to Arrhenius' equation that expresses a relationship between chemical reaction rates and temperature, and called Arrhenius' rule of aluminum electrolytic capacitors. The temperature acceleration factor (B) is approximately 2 over an ambient temperature range (Tx) from 40°C to the maximum rated category temperature of each capacitor. It means that the lifetime is approximately halved with every 10°C rise in ambient temperatures. For an ambient temperature range (Tx) of 20°C to 40°C, the factor B will be close to 2, and the lifetime will actually be extended. However, operating and surrounding conditions, especially the operating conditions influence ambient temperatures mutually. The ambient temperature in this range will be very changeable; therefore, lifetime estimation under 40°C should use 40 as Tx.

Kvoltage (Effects of applying voltage to life):

Miniature and large sized aluminum electrolytic capacitors for popular applications, such as surface mount types, radial lead types, snap-in types and block types, have little voltage effect on their life. Other factors like temperature and ripple current determine the life in comparison with voltage, as long as the capacitors are used at voltages and temperatures within the specifications prescribed in the catalog. Consequently, Kvoltage=1 is used for these capacitors. 350V and higher screwmount terminal types of capacitors for customer-use power electronics applications allow the life time to extend by applying low voltage, relating to the characteristics of their aluminum oxide layer. RWE, RWY, RWL, RWF, LX(Screw-mount), LXA(Screw-mount) and LXR series are applicable to the method. For Kvoltage values of these products, please contact a representative of Nippon Chemi-Con.

Kripple (Effects of ripple current to life):

Aluminum electrolytic capacitors have higher tan δ than any other types of capacitors; therefore, the ripple current gives aluminum electrolytic capacitors higher internal heat. Be sure to check the rated ripple current which is specified in the catalog for assuring the life.

PRECAUTIONS AND GUIDELINES

The ripple current through the capacitor produces heat by dissipating power from the capacitor. This leads to temperature increase. Internal heating produced by ripple currents can be expressed by:

W=(IRipple)²·RESR+V·ILeakage Where : W =Internal power loss

- IRipple =R.M.S. ripple current
 - RESR =Internal resistance (ESR) at ripple frequency V =Applied voltage
 - V =Applied voltage ILeakage=Leakage current

Leakage current may be 5 to 10 times higher than the values measured at 20 $^{\circ}$ C, but compared with Iripple , the leakage current value is very small and negligible. Thus, the above equation can be simplified:

W=(IRipple)²·RESR

The following equation gives the internal heat rise; it is heat rise to stable condition. (It is necessary to input several factors.):

 $\begin{array}{ll} (|\mathsf{I}_{\mathsf{Ripple}})^2 \cdot \mathsf{R}_{\mathsf{ESR}} = \beta \cdot \mathsf{A} \cdot \Delta \mathsf{T} \\ \text{Where : } \beta &= \text{Heat transfer constant} \\ & A &= \text{Surface area of can case} \\ & A = (\pi/4) \cdot \mathsf{D} \cdot (\mathsf{D} + 4\mathsf{L}) \\ & \text{Where : } \mathsf{D} = \mathsf{Can \ diameter} \\ & \mathsf{L} = \mathsf{Can \ length} \\ & \Delta \mathsf{T} = \mathsf{An \ increase in \ core \ temperature \ by \ internal \ heating \ due \ to \ ripple \ current} \\ & (\Delta \mathsf{T} = \mathsf{Core \ temperature} - \mathsf{Ambient \ temperature}) \end{array}$

From the above equation, internal temperature rise (ΔT) produced by ripple current is given by:

 $\begin{array}{l} \Delta T = (I_{\text{Ripple}})^2 \cdot R_{\text{ESR}} \ (\ \beta \cdot A) \\ \text{When the ripple frequency is 120Hz, } R_{\text{ESR}} \ \text{at 120Hz is expressed by} \\ R_{\text{ESR}} = tan \delta / \ (\omega \cdot C) \\ \Delta T = (I_{\text{Ripple}})^2 \cdot tan \delta / \ (\ \beta \cdot A \cdot \omega \cdot C) \\ \text{Where : } tan \delta = 120 \text{Hz value} \\ \omega = 2\pi \cdot f = 2\pi \cdot 120 \text{Hz} \\ C = 120 \text{Hz capacitance value} \end{array}$

As above equation, ΔT varies with frequency of ripple, frequency and temperature dependent ESR, and application dependent β (even ripple current is constant). We really recommend that customers measure ΔT with a thermocouple at the actual operating conditions of the application in lieu of using the above equation. (Another approximation of ΔT will be stated later.)

As mentioned in the paragraph of K_{Temp}, aluminum electrolytic capacitors will slowly increase in tan δ and ESR during their service life. The application without ripple current has no influence on the life of the capacitor even though the ESR will increase during life. In other words, the application with ripple current makes Δ T increase; furthermore, a Δ T increase results in ESR increase. The ESR increase then makes Δ T increase. It is a chain reaction. Theoretically, the ripple current acceleration term (K_{Ripple}) cannot be simply expressed like the ambient temperature acceleration term (K_{Ripple}). Practically, the ripple current acceleration term (K_{Ripple}) can be approximately expressed by an equation using a Δ T initially measured. The following table shows the ripple current acceleration term (K_{Ripple}) for each capacitor design group.

K	Ripple		Products		
I VI/Ibbie		Туре	Series		
		Surface mount	MVS, MVA, MV, MVE, MVK, MKA, MZA, MVY, MLA MVJ, MVL, MVH, MV-BP, MVK-BP		
2(-at /5)		Radial lead	KMA, KME-BP, KRE, KRG, LLA, SME, SMQ, SME-BP, SMG, SRA, SRE,SRG,SRM		
		Screw-mount terminal	кw		
ΔTo=5 deg		Radial lead	FL, GXE(To≦105°C), KLG, KME, KMQ, KMF, KMG, KMH, KMX, KXG, PAG, LBG, LXV, LXY, LXZ, KZM, KZH, KZE, KY, KXJ, GPA, KLJ, KMR		
		Pin terminal	KMH, KMM, KMQ, LXG, LXM, LXH, LXQ, CHA		
2 ^{(ΔTo-ΔT) /5}		Screw-mount terminal	LXA (10 to 250Vdc), KMH		
	ΔTo=5 to 10 deg Contact us for details	Radial lead	SMH		
		Pin terminal	SMH, SMM, SMQ, SLM, RWE-LR		
		Screw-mount terminal	SME		
2[-2+(25-ΔT) /b]		Screw-insert terminal	LXA (350 to 525Vdc), RWE, RWF, RWL, LXR, RWY, RWG		
 Note :ΔT = An increase (deg) in core temperature produced by internal heating due to actual operating ripple current. The ΔT is the difference between the core temperature and ambient temperature measured at the actual operating conditions. ΔTo = An increase (deg) in core temperature by internal heating due to rated ripple current. b = Factor b varies from 5 to 10 by the conditions of ripple frequency and ΔT. Please contact a representative of Nippon Chemi-Con for the details 					

Note that a ΔT over a certain maximum limit may over-heat the capacitors, though the lifetime estimation will not give you practical lifetime. For instance, the following shows a guide limit of ΔT at each ambient temperature for 105°C maximum rated products.

Ambient temperature Tx (°C)	85	105
Guide limit of ∆T (deg)	15	5
Core temperature (=Tx+∆T)	100	110

Approximation of ΔT

Estimation of the lifetime requires two temperature measurements; first obtain ΔT by actually measuring the core temperature, inserting the thermocouple inside the operating capacitor and secondary, the ambient temperature. A more convenient way to get the ΔT is to convert the surface temperature of the capacitor case and the ambient temperature by using a coefficient specified for each case diameter as follows:

ΔT=Kc ⋅ (Ts-Tx)

Where : Kc=Coefficient from table below Ts=Surface temperature (deg) of capacitor can case Ts=Surface temperature (deg) of capacitor can case Ts=Surface temperature (deg) of capacitor can case the table temperature (deg) of capacitor can case the table temperature (deg) of capacitor can case the table temperature (deg) of capacitor can case temperature (deg) of c

Tx=Ambient temperature (deg)

						No a	ir flow co	onditions.
Diameter (mm)	φ5 to φ8		φ10	φ12.5	φ16	φ18	φ22	φ25
Kc	1.10		1.15	1.20	1.25	1.30	1.35	1.40
Diameter (mm)	φ30	φ35	φ40	φ50	φ63.5	φ76	φ89	φ100
Kc	1.50	1.65	1.75	1.90	2.20	2.50	2.80	3.10

Also, you can roughly estimate a ΔT by using the following equation without need to measure.

 $\Delta T = \Delta T_0 \cdot (Ix/Io)^2$

Where : $\Delta T_{0=5}$ deg for 105°C maximum rated capacitors.

- Io =Rated ripple current (ARMS): if its frequency is different from operating ripple current Ix, it needs converting by using a frequency multiplier prescribed in the catalog.
- Ix =Operating ripple current (ARMS) actually flowing into a capacitor

Like switching power supplies, if the operating ripple current consists of commercial frequency element and switching frequency element(s), an internal power loss is expressed by the following equation.

$$W = (If_1)^2 \cdot ESR_{f1} + (If_2)^2 \cdot ESR_{f2} + \dots + (If_n)^2 \cdot ESR_{fn}$$

The above equation can be transformed into another equation to get a ripple current value in accordance with the frequency of the rated ripple current, each of ESRf1,...ESRfn is approximately equal to ESRf0 divided by square value of the frequency multiplier (Ff1...Ffn). Here ESR^{f0} is the value at the frequency of the rated ripple current and Ff1...Ffn is a conversion coefficient from one frequency to another in accordance with the frequency f1...fn.

$$\begin{array}{c} \mathsf{ESR}_{f1} = \mathsf{ESR}_{f0} / (\mathsf{Ff}_1)^2 \\ \vdots \\ \mathsf{ESR}_{fn} = \mathsf{ESR}_{f0} / (\mathsf{Ff}_n)^2 \end{array}$$

Relationship of $w=(L_{Ripple})^2 \cdot R_{ESR}$ leads Ix as follows:

Ix=\/W/ESRf0

The above is rewritten in the following equation:

 $I_{x=\sqrt{(I_{f1}/F_{f1})^{2}+(I_{f2}/F_{f2})^{2}+\cdots+(I_{fn}/F_{fn})^{2}}$

- Where : Ix =Ripple current in accordance with the frequency of the rated ripple current In=Operating ripple currents at every frequencyf1...fn Fr1.....Fm=Frequency multipliers for every frequencyf1...fn
 - prescribed in the catalog, based on the fact that the internal resistance of a capacitor varies with frequency.

Cleaning Agents

- a. Cleaning agents penetrate into a capacitor. Solvent contacts the rubber seal of a capacitor. Some percentage of solvent does not penetrate but a percentage suceeds in entering and defusing inside the capacitor.
- b. Cleaning agents decompose and release halogen ions.
 In the electrolyte of the inside element, the halides in the cleaning agents become hydrolyzed and release halogen ions as follows,

$RX+H_2O \rightarrow ROH+H^++X^-$ RX : Halide X⁻ : Halogen ion

c. Corrosion

The halogen ions attack the aluminum foil by the following anodic half-cell reaction:

 $AI+3X^- \rightarrow AIX_3+3e$

The AIX3 further becomes hydrolyzed and release the halogen ion again:

 $AIX_3+3H_2O \rightarrow AI (OH)^3+3H^++3X^-$

The halogen ions release by this hydrolysis reaction further attacks the aluminum according to the previous reaction formula, and these reactions are repeated and accelerated when voltage and temperature is applied. Also, the hydrogen ions increase the local acidity which causes the oxide dielectric to dissolve. Thus, localized corrosion accelerates to corrode both the aluminum metal and the dielectric. In addition, a terpene or petroleum system cleaning solvent will be absorbed into the rubber seal of the capacitor. The rubber seal finally weakens. An alkaline saponification detergent will damage the aluminum metal and marking. In summary, recommended cleaning agents are halogen free. Terpene, petroleum, alkali detergent and any solvent making the rubber seal material deteriorate are not recommended.

Compatible cleaning agents:

In line with recent global environmental warnings (Greenhouse effect and other environmental destruction by depletion of the ozone layer), new types of cleaning agents have been commercialized and substituted as CFC-113,1,1,2-trichloroethlene and 1,1,1-trichloroethylene. The following are recommended cleaning conditions for some of new cleaning agents.

Higher alcohol system cleaning agents

Recommended cleaning agents: Pine Alpha ST-100S (Arakawa Chemical) Clean Through 750H, 750K, 750L, and 710M (Kao) Technocare FRW-14 through 17 (GE Toshiba Silicones) Cleaning conditions:

- Capacitors are capable of withstanding immersion or ultrasonic cleaning for 10 minutes at a maximum liquid temperature of 60°C using the above cleaning agents. Find the optimum conditions for washing, rinsing, and drying. Be sure not to rub the marking off the capacitor by contact with any other components on the PC board. Note that shower cleaning adversely affects the marking.
- 2) To rinse by water, control the conditions such as temperature and water pressure to avoid sleeve shrinkage.
- 3) Clean Through 750H and similar are weak-alkaline solvents. Do not leave the alkaline on the capacitor after cleaning process.

CFCs substitute solvents (HCFC system)

Asahi Glass AK225AES solvent is usable only with solvent resistant type capacitors, which are designed with reinforced seal constructions and modified electrolyte. This product does not penetrate the capacitor and deactivate halogen ions. However, AK225AES is one of the solvents which will have a restricted usage in future from the environmental point of view.

Non-Halogenated Solvent Cleaning

HCFC solvents: AK225AES (Asahi Glass)

Cleaning conditions: Solvent resistant type capacitors are capable of withstanding immersion, ultrasonic or vapor cleaning for 5 minutes; exception is 2 minutes max. for KRE and KRE-BP series capacitors for 3 minutes and SRM series capacitors. Applicable series (only for solvent resistant products):

replicable series (only for servent resistant products).				
Surface mount : MVS, MVA(4 to 63Vdc), MV, MVE(6.3 to				
63Vdc), MVK, MKA, MZA, MLA, MVY(6.3				
to 63Vdc), MVJ, MVL, MVH(10 to 50Vdc),				
MV-BP, MVK-BP, PXF, PXE, PXA, PXH,				
MZD, MLD				
Radial lead : SRM, KRE, KMA, SRG, KRG, SMG(6.3 to				
250Vdc), SME-BP, KMQ(6.3 to 100Vdc),				
KMG(6.3 to 250Vdc), KME-BP, LXZ, LXY,				
LXV, FL, GXE(10 to 50Vdc), GXL, LBG,				
LLA, PS, PSC, PSA, GPA				

Isopropyl alcohol cleaning agents

IPA (Isopropyl Alcohol) is one of the most acceptable cleaning agents; it is necessary to maintain a flux content in the cleaning liquid at a maximum limit of 2 Wt. %, because chlorides in flux dissolves in the cleaning liquid during the cleaning process.

Xylene -additive IPA may make the rubber seal deteriorate.

Non-clean flux

Both ionic halogen and non-ionic halogens damage the capacitor when they penetrate in through the rubber seal. Note that some of the fluxes called non-halogenated flux contains less ionic halogen activator but actually a large amount of non-ionic halogen.

Per our analysis, AHQ3100K(Asahi) and POZ6(Senjyu) minimize ionic and non-ionic halogens.

Other Precautions to wash capacitors

- a) Monitor conductivity, pH, specific gravity and water content of cleaning agents. Contamination adversely affects the characteristics.
- b) The solvent may stay between the end seal and the PC board if the capacitor is mounted directly onto the PCB without a small gap. The residual solvent can cause defects. Also, washing for more than the specified time causes solvent residual. Therefore, wash the assembly board for at least 10 minutes at the recommended temperature. Be sure not to expose the capacitors under solvent rich conditions or keep capacitors inside a closed container.
- c) Reforming the leads of the capacitor to fit lead spacing on the PC board causes cleaning agents to get into the inside capacitor. This may result in corrosion to the foil. Therefore, use the capacitors, which fit the hole spacing on the PC board or reform the lead wires in a manner which will not cause mechanical stress to the capacitor body.